Декарт первым опубликовал истинный закон обыкновенного преломления, который Кеплер и другие физики безуспешно искали. Гюйгенс в своей «Диоптрике» утверждает, что он видел этот закон, представленный в другой форме, в рукописи Снеллиуса и что, как ему сказали, он был сообщён Декарту, откуда, может быть, прибавляет он, этот последний и вывел постоянство отношения синусов углов преломления и падения. Но эта запоздалая претензия Гюйгенса в пользу своего соотечественника не представляется мне достаточной, чтобы отнять у Декарта заслугу открытия, которое никто не оспаривал при его жизни. Этот великий геометр вывел его из двух предположений: первого — скорость света, параллельная плоскости падения, не изменяется ни отражением, ни преломлением и второго — скорость различна в разных прозрачных средах, и больше в тех из них, которые сильнее преломляют свет. Отсюда Декарт заключил, что если при переходе из одной среды в другую, менее преломляющую, наклон световых лучей таков, что значение синуса угла преломления равно или больше единицы, то преломление меняется на отражение, причём углы отражения и падения между собой равны. Все эти выводы согласуются с природой, но доказательства, данные Декартом, не точны, и примечательно, что Гюйгенс и он благодаря неточной или ложной теории пришли к истинным законам преломления света. По этому вопросу у Декарта были долгие споры с Ферма, продолженные картезианцами после его смерти; эти споры предоставили Ферма счастливую возможность применить свой прекрасный метод максимумов и минимумов к выражениям с радикалами. Рассматривая этот предмет с метафизической точки зрения, он искал закон преломления на основании принципа, изложенного нами ранее, и был очень удивлён, придя к принципу Декарта. Но, найдя, что для удовлетворения его принципу скорость света должна быть меньше в прозрачных средах, чем в пустоте, тогда как Декарт считал её большей, что казалось Ферма невероятным, он утвердился в мнении, что доказательства этого великого геометра были ошибочными.
В главе II третьей книги мы видели, как принцип Ферма привёл к принципу наименьшего действия, применение которого к движению света в прозрачных кристаллических телах заставляет законы преломления и отражения света зависеть от законов действия этих тел на свет; это доказывает, что такого рода явления суть результат притягивающих и отталкивающих сил, и ставит закон Гюйгенса в ряд строго доказанных истин.
Внимательно изучая явления капиллярности, такие же разнообразные, как и движения света, я узнал, что и они, подобно последним, зависят от притягивающих сил, которые перестают быть ощутимыми при самых малых расстояниях, доступных нашим чувствам, и сумел на основании только этого свойства подвергнуть их строгому анализу. Рассмотрим сначала главные из этих явлений — поднятие и опускание жидкостей в очень узких трубках.
Если опустить в спокойную воду конец очень тонкой цилиндрической стеклянной трубки, вода поднимется в ней на высоту, обратно пропорциональную её внутреннему диаметру. Если этот диаметр равен 1 мм и если внутренность трубки хорошо смочена, высота воды над уровнем будет около 30.5 мм при температуре 10°. Все жидкости демонстрируют подобные явления, но их поднятия неодинаковы: некоторые из них вместо того, чтобы подниматься, опускаются ниже уровня, но опускание всегда обратно пропорционально диаметру трубки. Для ртути это опускание в стеклянной трубке с внутренним диаметром в 1 мм близко к 13 мм. Трубки из мрамора или из других материалов дают результаты, аналогичные предыдущим: если они очень узкие, жидкости поднимаются или опускаются обратно пропорционально диаметру их полостей.
В трубках и, вообще, в капиллярных пространствах поверхность жидкости вогнута, если жидкость поднимается над уровнем, и выпукла, если опускается ниже его.
Все эти явления имеют место как в пустоте, так и на открытом воздухе. Следовательно, они не зависят от давления атмосферы. Поэтому они могут быть только результатом притяжения одних молекул жидкости другими, а также стенками, которые их заключают.
Большая или меньшая толщина стенок не оказывает никакого заметного влияния на эти явления. Поднятие и опускание жидкостей в капиллярных трубках всегда одинаковы, какова бы ни была эта толщина, если только одинаковы внутренние диаметры. Значит, цилиндрические слои, находящиеся на заметном расстоянии от внутренней поверхности, не участвуют в поднятии жидкости, хотя в каждом из них, взятом в отдельности, она должна была бы подниматься над уровнем. Естественно думать, что их действию не мешают промежуточные слои, которые ими охватываются, и что притяжения такого рода передаются через тела так же, как сила тяжести. В связи с этим действие заметно удалённых от внутренней- поверхности трубки слоёв исчезает только вследствие их отдалённости от жидкости, откуда следует, что действие тел на жидкости, как и на свет, заметно только на незаметных расстояниях.