Читаем Изложение системы мира полностью

Но притягивающая сила, производя капиллярные явления, действует совсем иным способом, чем при преломлении света. Это последнее явление обусловлено действием прозрачных сред, и когда они ограничены криволинейными поверхностями, можно, как мы видели, пренебречь действием мениска, отсекаемого плоскостью, касательной к этим поверхностям, тогда как капиллярные явления производятся действием этого мениска. В самом деле, если по оси стеклянной трубки, погруженной вертикально в сосуд, наполненный водой, вообразить бесконечно тонкий канал, изгибающийся в нижней части трубки и оканчивающийся далеко от неё на поверхности воды в сосуде, действие воды в трубке на воду, содержащуюся в этом канале, будет меньше, чем действие воды в сосуде на воду, заключённую в другом конце канала. Разность определяется действием водяного мениска, отсекаемого плоскостью, касательной в самой низкой точке поверхности воды в трубке, действием, которое, очевидно, стремится приподнять жидкость в канале и поддерживать её приподнятой в равновесии над её уровнем. Поэтому для объяснения капиллярных явлений было необходимо знать действие подобных менисков. Подвергнув этот предмет математическому анализу, я пришёл к такой основной теореме: во всех законах, где притяжение заметно только на незаметных расстояниях, аналитическое выражение действия жидкого тела, оканчивающегося изогнутой поверхностью, на внутренний бесконечно узкий канал, перпендикулярный к этой поверхности в любой точке, состоит из трёх членов: первый, несравнимо превосходящий два других, выражает действие тела в предположении, что оно оканчивается плоскостью; второй есть дробь, числитель которойпостоянная, зависящая от интенсивности и закона притягивающей силы, а знаменательсамый малый оскулирующий радиус поверхности в этой точке; третий член есть дробь, имеющая одинаковый числитель с предыдущей, а знаменателемнаибольший оскулирующий радиус в той же точке.

Оскулирующие радиусы должны считаться положительными, если поверхность выпуклая, и отрицательными, если она вогнутая. Под действием тела на канал нужно подразумевать давление, которое жидкость, заключённая в канале, в силу притяжения этого тела оказывала бы на основание, расположенное внутри канала перпендикулярно его сторонам, если принять это основание за единицу.

С помощью этой теоремы и законов равновесия жидкостей можно легко получить дифференциальное уравнение фигуры, которую должна принять жидкая масса, заключённая в сосуде заданной формы под влиянием тяжести. Анализ приводит к уравнению с частными производными второго порядка, интеграл которого не берётся никакими известными методами. Если фигура — тело вращения, уравнение сводится к обычным разностям и может быть интегрировано быстро сходящимися приближениями, когда поверхность очень мала. Таким путём находим, что в цилиндрических очень узких трубках поверхность жидкости тем больше приближается к сферическому сегменту, чем меньше внутренний диаметр трубки. Если в разных цилиндрических трубках из одинакового материала эти сегменты подобны, радиусы их поверхностей относятся как диаметры трубок; а это подобие сферических сегментов представляется очевидным, если принять во внимание малость расстояния, на котором действие трубки перестаёт быть ощутимым. Таким образом, если с помощью очень сильного микроскопа удалось бы его представить равным 1 мм, очень вероятно, что такая же сила увеличения дала бы диаметру трубки видимую величину в несколько метров. Поэтому внутренняя поверхность трубки может рассматриваться как почти плоская в радиусе, равном радиусу сферы её заметного действия. Жидкость в этом промежутке понижается или поднимается от этой поверхности, как если бы она была плоской. Поскольку жидкость вне этого предела подвержена лишь действию самой на себя, её поверхность есть сферический сегмент, крайние касательные плоскости которого, будучи плоскостями жидкой поверхности на границах активного действия трубки, в разных трубках почти одинаково наклонены к их стенкам, откуда следует, что эти сегменты подобны.

Сопоставление этих результатов даёт истинную причину поднятия и опускания жидкостей в капиллярных трубках обратно пропорционально их диаметрам.

Перейти на страницу:

Все книги серии Классики науки

Жизнь науки
Жизнь науки

Собрание предисловий и введений к основополагающим трудам раскрывает путь развития науки от Коперника и Везалия до наших дней. Каждому из 95 вступлений предпослана краткая биография и портрет. Отобранные историей, больше чем волей составителя, вступления дают уникальную и вдохновляющую картину возникновения и развития научного метода, созданного его творцами. Предисловие обычно пишется после окончания работы, того труда, благодаря которому впоследствии имя автора приобрело бессмертие. Автор пишет для широкого круга читателей, будучи в то же время ограничен общими требованиями формы и объема. Это приводит к удивительной однородности всего материала как документов истории науки, раскрывающих мотивы и метод работы великих ученых. Многие из вступлений, ясно и кратко написанные, следует рассматривать как высшие образцы научной прозы, объединяющие области образно-художественного и точного мышления. Содержание сборника дает новый подход к сравнительному анализу истории знаний. Научный работник, студент, учитель найдут в этом сборнике интересный и поучительный материал, занимательный и в то же время доступный самому широкому кругу читателей.

Сергей Петрович Капица , С. П. Капица

Научная литература / Прочая научная литература / Образование и наука
Альберт Эйнштейн. Теория всего
Альберт Эйнштейн. Теория всего

Альберт Эйнштейн – лауреат Нобелевской премии по физике, автор самого известного физического уравнения, борец за мир и права еврейской нации, философ, скрипач-любитель, поклонник парусного спорта… Его личность, его гений сложно описать с помощью лексических формул – в той же степени, что и создать математический портрет «теории всего», так и не поддавшийся пока ни одному ученому.Максим Гуреев, автор этой биографии Эйнштейна, окончил филологический факультет МГУ и Литературный институт (семинар прозы А. Г. Битова). Писатель, член русского ПЕН-центра, печатается в журналах «Новый мир», «Октябрь», «Знамя» и «Дружба народов», в 2014 году вошел в шорт-лист литературной премии «НОС». Режиссер документального кино, создавший более 60-ти картин.

Максим Александрович Гуреев

Биографии и Мемуары / Документальное
Капица. Воспоминания и письма
Капица. Воспоминания и письма

Анна Капица – человек уникальной судьбы: дочь академика, в юности она мечтала стать археологом. Но случайная встреча в Париже с выдающимся физиком Петром Капицей круто изменила ее жизнь. Известная поговорка гласит: «За каждым великим мужчиной стоит великая женщина». Именно такой музой была для Петра Капицы его верная супруга. Человек незаурядного ума и волевого характера, Анна первой сделала предложение руки и сердца своему будущему мужу. Карьерные взлеты и падения, основание МИФИ и мировой триумф – Нобелевская премия по физике 1978 года – все это вехи удивительной жизни Петра Леонидовича, которые нельзя представить без верной Анны Алексеевны. Эта книга – сокровищница ее памяти, запечатлевшей жизнь выдающегося ученого, изменившего науку навсегда. Книга подготовлена Е.Л. Капицей и П.Е. Рубининым – личным доверенным помощником академика П.Л. Капицы, снабжена пояснительными статьями и необходимыми комментариями.

Анна Алексеевна Капица , Елена Леонидовна Капица , Павел Евгеньевич Рубинин

Биографии и Мемуары / Документальное

Похожие книги

Мир в ореховой скорлупке
Мир в ореховой скорлупке

Один из самых блестящих ученых нашего времени, известный не только смелостью идей, но также ясностью и остроумием их выражения, Хокинг увлекает нас к переднему краю исследований, где правда кажется причудливее вымысла, чтобы объяснить простыми словами принципы, которые управляют Вселенной.Великолепные цветные иллюстрации служат нам вехами в этом странствии по Стране чудес, где частицы, мембраны и струны движутся в одиннадцати измерениях, где черные дыры испаряются, и где космическое семя, из которого выросла наша Вселенная, было крохотным орешком.Книга-журнал состоит из иллюстраций (215), со вставками текста. Поэтому размер ее больше стандартной fb2 книги. Иллюстрации вычищены и подготовлены для устройств с экранами от 6" (800x600) и более, для чтения рекомендуется CoolReader.Просьба НЕ пересжимать иллюстрации, т. к. они уже сжаты по максимуму (где-то Png с 15 цветами и более, где то jpg с прогрессивной палитрой с q. от 50–90). Делать размер иллюстраций меньше не имеет смысла — текст на илл. будет не читаемый, во вторых — именно по этой причине книга переделана с нуля, — в библиотеке была только версия с мелкими илл. плохого качества. Макс. размер картинок: 760(высота) x 570(ширина). Книга распознавалась с ~300mb pdf, часть картинок были заменены на идент. с сети (качество лучше), часть объединены т. к. иногда одна илл. — на двух страницах бум. книги. Также исправлена последовательность илл. в тексте — в рус. оригинале они шли на 2 стр. раньше, здесь илл. идет сразу после ссылки в тексте. Psychedelic

Стивен Уильям Хокинг

Астрономия и Космос
Большое космическое путешествие
Большое космическое путешествие

Основой этой книги стал курс Принстонского университета, который читали гуманитариям три знаменитых астрофизика – Нил Деграсс Тайсон, Майкл Стросс и Джон Ричард Готт. Они рассказывают о том, что любят больше всего, и рассказывают так, что самые сложные теории становятся понятны неспециалистам.Астрономы не привыкли усложнять то, что может быть простым. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Если звезда пульсирует, она называется пульсар. Даже начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой Взрыв.Что мы знаем о Вселенной? Наша Вселенная велика. Наш Космос гораздо больше, чем кажется. Он жарче, чем вы думаете. Плотнее, чем вы думаете. Разреженнее, чем вы думаете. Что бы вы ни думали о Вселенной, реальность все равно окажется невероятнее.Добро пожаловать во Вселенную!

Дж. Ричард Готт , Майкл А. Стросс , Нил Деграсс Тайсон

Астрономия и Космос
Двенадцатый космонавт
Двенадцатый космонавт

Георгий Тимофеевич Береговой… Человек, знакомый миллионам людей и пользовавшийся большим и заслуженным авторитетом. Летчик-фронтовик, совершивший 186 боевых вылетов, награжденный многими орденами и медалями, Герой Советского Союза, «мастер штурмовых атак». Заслуженный летчик-испытатель СССР, давший путевку в небо многим десяткам крылатых машин, один из лучший испытателей Советского Союза периода 50-х – 60-х годов прошлого века, знаменитый «король штопора». Летчик-космонавт СССР, получивший звание дважды Герой Советского Союза за испытательный полет на космическом корабле «Союз-3» в октябре 1968 года, – за полет, который фактически открыл дорогу в космос целому поколению космических кораблей «Союз», «СоюзТ», «СоюзТМ», орбитальным станциям «Салют» и «Алмаз», орбитальному комплексу «Мир».  

Сергей Чебаненко

Публицистика / Астрономия и Космос / История