Таким образом, перед геодезистами встала ясно сформулированная задача. Необходимо с максимальной точностью измерить две дуги меридиана: одну на севере, ближе к полюсу, другую на юге, ближе к экватору, после чего сравнить их. В случае, если полярная дуга окажется длиннее экваториальной, прав Ньютон. Если же полярная дуга окажется короче, то правы его противники: Земля имеет форму яйца.
Точные измерения протяженных расстояний по пересеченной местности всегда вызывали большие трудности и не могли выполняться с требуемой точностью. Удачный метод измерения больших расстояний удалось дать примерно за полвека до описываемых событий, в 1614 г., голландскому астроному и математику Снеллиусу, предложившему пользоваться для этой цели цепочками треугольников. Слово «треугольник» звучит по-латыни как «триангулум», а поэтому метод Снеллиуса получил название триангуляции.
Математические основы триангуляции крайне просты. Всякий плоский треугольник, как известно, состоит из шести элементов: трех сторон и трех углов. Если в треугольнике даны одна сторона и два угла, то такой треугольник можно «решить», т. е. исходя из известных элементов с помощью определенных формул вычислить величины неизвестных элементов. То же самое относится и к так называемым сферическим треугольникам, т. е. треугольникам, построенным на поверхности шара. Отсюда нетрудно понять существо метода триангуляции.
Пусть необходимо измерить расстояние между флажками, поставленными в точках А и Б (см. рисунок). Чтобы выполнить такое измерение непосредственно, потребовалось бы снести значительную часть домов, вырубить в лесу просеку, засыпать овраг и построить мост через реку. Стоимость всех этих работ выразится огромной суммой. На их выполнение уйдет немало времени.
Применение метода триангуляции позволяет обойти эти трудности. Поставим на дороге в точке В еще один флажок и измерим с максимально возможной точностью линию АВ. Дорога на этом участке прямая, ровная, и поэтому измерение может быть выполнено легко. Назовем измеренную линию базисом.
Обследовав местность, отметим флажком еще одну точку Г так, чтобы с нее были хорошо видны флажки в точках А, Б и В. Теперь пункты А, В и Г образуют на поверхности Земли треугольник, в котором сторона АВ известна. Остается измерить два угла, например в точках В и Г, после чего, решив треугольник, можно получить длины сторон АГ и ВГ и величину угла в точке А. Получив длину стороны ВГ, будем действовать дальше и измерим в точках В и Г два угла треугольника ВГБ. Зная длину стороны ВГ и значения углов в точках В и Г, отмеченные на рисунке двойной дужкой, вычислим длины сторон ВБ и ГБ и величину угла в точке Б. Таким образом, на поверхности Земли будут построены два треугольника АВГ и ВГБ, в которых известны все углы и все стороны. Теперь вычислим искомое расстояние АБ и поставленная задача разрешена.
Основное достоинство триангуляции заключается в том, что она сокращает до минимума дорогостоящие и исключительно трудоемкие линейные измерения. Они сводятся лишь к определению длины базиса, причем базис может быть выбран там, где его легче всего измерить. Наибольший объем работ в триангуляции составляют не линейные, а угловые измерения, выполнение которых сопряжено с гораздо меньшими трудностями. Для угловых измерений не имеет существенного значения, течет ли между пунктами река, растет ли кустарник или расположен глубокий овраг. Важно только, чтобы из одного пункта можно было беспрепятственно видеть другой. А этого, как правило, всегда можно добиться, если заранее намечать пункты на основе подробного знакомства с местностью.
Цепочки, состоящие из многих треугольников, позволяют с очень высокой точностью измерять на поверхности Земли расстояния в сотни и тысячи километров. В вершинах треугольников строят специальные геодезические знаки – вышки, благодаря которым стороны каждого из измеряемых треугольников могут достигать 20-30 км. В прежнее же время в качестве пунктов триангуляции использовались крепостные башни, колокольни и другие стоящие на высоких местах заметные сооружения.
Под руководством директора Парижской обсерватории Джана Доменика Кассини большие триангуляционные работы еще при жизни Ньютона выполнялись во Франции вдоль Парижского меридиана. Но эти измерения, затянувшиеся на долгие годы, так и не разрешили ожесточенного спора о форме нашей планеты. Кассини до самой смерти оставался яростным противником «сплюснутой» Земли. Той же ошибочной точки зрения придерживался и унаследовавший пост директора Парижской обсерватории Кассини-сын.