Гевелию удалось довести телескопы-рефракторы до очень больших размеров и благодаря этому добиться довольно больших увеличений при удовлетворительном качестве изображений.
Но он никак не мог расширить возможности своих телескопов для наблюдений слабых объектов.
У человека и у животных (обычно это хорошо заметно у кошек), когда они находятся в темноте, зрачок расширяется. Путем расширения зрачка живой организм регулирует количество поступающего в глаз света. Чем слабее источник света, тем больше должна быть рабочая поверхность зрачка.
Объектив телескопа – это большой искусственный зрачок. И чем больше поверхность объектива, тем с большей площади собирает он свет и тем более слабые источники света могут быть обнаружены при помощи телескопа.
Создание больших линзовых телескопов сопряжено с непреодолимыми техническими трудностями. Но сравнительно быстро астрономы осознали, что есть иной подход к проблеме. В качестве объективов могут использоваться вогнутые зеркала. А изготовление больших вогнутых зеркал – дело значительно более простое, чем изготовление таких же линз. Телескопы с зеркальными объективами носят название отражательных телескопов, или телескопов-рефлекторов.
Небольшие телескопы-рефлекторы мастерил в своей домашней лаборатории уже Ньютон. Первые крупные инструменты были изготовлены в конце XVIII в. Пионером в этом деле стал известный английский музыкант, композитор и педагог Вильям Гершель. Музыкантом Гершель оставался до 36 лет, когда понял, что его призвание – астрономия. Он задумал собственными глазами осмотреть все то, о чем писалось в астрономических книгах. Не имея денег для покупки телескопа, Гершель начал строить его сам. Потом построил второй, третий. С каждым разом они становились все больше и лучше. Но Гершель не прекращал совершенствовать их. Бывали случаи, когда он не отрывался от работы по суткам. Его сестра, боясь, как бы он не умер с голоду, кормила его, как ребенка.
Трубы Гершеля не имели такой потрясающей длины, как трубы Гевелия. Но зато у них были огромные объективы, которые позволяли Гершелю наблюдать очень слабые объекты. Самый крупный из зеркальных телескопов Гершеля имел зеркало поперечником 120 см при сравнительно короткой трубе – 12 м. Вверх-вниз он двигался с помощью блоков, а вправо-влево поворачивался на специальной платформе.
До середины XVIII в. астрономам было известно, включая Землю, шесть планет. Открытие, впервые прославившее Гершеля, – седьмая планета, которая не видна простым глазом. Ее назвали Ураном.
Благодаря работам Гершеля из астрономии была выделена еще одна область исследований – звездная астрономия. Этот отдел астрономии занимается изучением строения и развития нашей Галактики и других звездных систем, которое ведется преимущественно статистическими методами.
Спектральный анализ
Другой важный раздел астрономии получил бурное развитие в XIX в. на стыке астрономии и физики. Сегодня этот раздел называют астрофизикой.
Как и всякая другая область науки, астрофизика имеет долгую предысторию. Если говорить всерьез, то невозможно указать на одного-единственного «отца астрофизики». В сущности астрофизикой занимался уже Гиппарх, который разделил звезды по их блеску на 6 звездных величин. В начале XIX в. исследованиями по поляризации света большой вклад в будущую астрофизику внес француз Франсуа Араго.
Астрофизика взросла на анализе особенностей поступающего от небесных светил электромагнитного излучения. Основой астрофизики стал спектральный анализ.
Свечение тел, или, в более общем виде, излучение энергии в форме электромагнитных колебаний, – явление чрезвычайно сложное, тесно связанное с внутренним строением излучающего тела. Электромагнитные колебания, излучаемые твердыми и жидкими телами, не имеют строго определенной, единой длины волны, а являются «смесью» – набором колебаний всевозможных длин волн.
Так как изменение направления распространения волновых колебаний при переходе в среду с иной плотностью (преломление) связано с их длиной, то лучок разноволновых колебаний может быть «расщеплен» и разложен в спектр. Пропустив луч солнечного света через стеклянную призму, мы получим на экране цветную полоску – сплошной (или, иначе, непрерывный) спектр. Беспорядочная «смесь» колебаний с разнообразными длинами волн оказывается рассортированной. Впервые такой опыт с солнечным светом проделал Ньютон.
Газ, находящийся под высоким давлением, также дает непрерывный спектр, от которого резко отличается спектр светящегося газа и паров нормальной или пониженной плотности. Спектр светящегося газа состоит из отдельных линий излучения – некоторого числа узких ярких линий, разделенных темными промежутками. Число и положение линий излучения строго определенно и неизменно для каждого газа. Такой спектр носит название линейчатого.