Читаем Как Alibaba использует искусственный интеллект в бизнесе. Сетевое взаимодействие и анализ данных полностью

Я привожу эти два примера, чтобы показать, как предприятие, которое оказалось в тисках обычной логистической цепочки и вынуждено ограничивать себя реализацией линейных контактов, может произвести реструктуризацию на интернет-платформах и тем самым перейти на взаимодействие в режиме реального времени. Это первый шаг, который должна совершить любая компания, стремящаяся к построению умного бизнеса.

Анализ данных

Теперь мы можем обратиться ко второму ключевому концепту в рамках умного бизнеса – анализу данных. Анализ данных по своей сути – это приход машин на смену человеку в процессе принятия решений. В этом прослеживается принципиальное отличие от BI[5]. На настоящий момент многие компании имеют собственные департаменты BI, которые производят анализ данных и оказывают поддержку в принятии решений. Основным заказчиком здесь выступает топ-менеджмент. Анализ данных же делает упор на то, чтобы управленческие решения принимались напрямую машинами. Например, каждый день на Taobao производят покупки более 100 млн человек. Каждый из клиентов просматривает различные товары. Обрабатывать подобный массив информации и принимать сложные управленческие решения под силу только машинам. Здесь весьма показателен вопрос: можете ли вы целиком передать функции сотрудников машинам? Если ответ положительный – вы совершите качественный скачок по направлению к умному бизнесу.

Конечно же, принципиальной предпосылкой для передачи ответственности за принятие решений машинам является наличие условий для этого: облачные вычисления, большие данные и алгоритмы. Облачные вычисления и большие данные в данном контексте дополняют друг друга: в отсутствие облачных вычислений мы не имеем возможности с низкими затратами хранить и обрабатывать огромный массив данных; в свою очередь, обработка больших данных и содержащихся в них запросов позволяет нам повышать требования к облачным вычислениям. Эти два элемента стимулируют постоянное ускоренное развитие всей индустрии данных. Тем не менее реальную ценность облачным вычислениям и большим данным придают стоящие за ними «мозги» – алгоритмы.

Строго говоря, алгоритмы нельзя назвать машинами, это продолжение человека, технологический процесс. Алгоритмы имитируют процесс мышления и деятельность человека, превращая абстракции в определенную модель. На основе математического подхода вырабатывается примерный протокол действий в данной конкретной модели, а затем при помощи компьютерного кода выполняется команда. Мы создаем машинный мозг. Алгоритмы трансформируют процесс мышления человека в определенной ситуации в модели и коды, которые понятны и доступны для исполнения машинами. Что касается уровня развития ИИ на настоящий момент, ИИ и человеческий мозг по-прежнему имеют множество различий. ИИ, исходя из огромного массива информации, постоянно обучается и оптимизирует решения, поэтому в отсутствие больших данных алгоритмы превращаются в бессмысленный набор символов.

Именно поэтому большие данные и алгоритмы лежат в основе машинного обучения. Сочетание этих двух элементов обеспечивает ускоренный режим оптимизации и итераций. Самое лучшее доказательство важности этих факторов – привлекшее всеобщее внимание в 2016 г. состязание между AlphaGo и Ли Седолем – профессионалом мирового уровня по игре в го. AlphaGo обладала большой вычислительной мощностью и высокой обучаемостью. Платформа смогла в ускоренные сроки изучить все имеющиеся в истории самоучители по игре в го и тем самым оптимизировать процесс игры. Эти возможности позволили программе быстро обыграть человека-соперника. Появившаяся вскоре после этого знаменательного события новая версия – AlphaGo Zero – оказалась еще более продвинутой и в определенном смысле предвосхитила будущие тренды. AlphaGo Zero в игре может обходиться без архивных материалов и самоучителей. Задействован алгоритм еще более высокого уровня. AlphaGo Zero скоро превзошла AlphaGo, и этот результат является косвенным доказательством наличия пространства для дальнейших прорывов в области алгоритмов.

Перейти на страницу:

Похожие книги

Руководство к своду знаний по управлению проектами (Руководство PMBOK®). Шестое издание. Agile: практическое руководство
Руководство к своду знаний по управлению проектами (Руководство PMBOK®). Шестое издание. Agile: практическое руководство

«Публикуемые Институтом управления проектами (Project Management Institute, Inc., сокращенно PMI) стандарты и руководства, к числу которых принадлежит и данный документ, разработаны согласно процессу разработки стандартов на основе добровольного участия и общего консенсуса. В ходе такого процесса объединяются усилия волонтеров и/или сводятся воедино замечания и мнения лиц, заинтересованных в предмете, которому посвящено данное издание. Хотя PMI администрирует этот процесс и устанавливает правила, гарантирующие непредвзятость при достижении консенсуса, PMI не занимается написанием документа, а также независимым тестированием, оценкой и проверкой точности или полноты материала, содержащегося в издаваемых PMI стандартах и руководствах. Подобным же образом, PMI не занимается проверкой обоснованности мнений, высказанных в этих документах…»

Коллектив авторов

Менеджмент / Финансы и бизнес