Однако добиться направленного действия антенны космической лаборатории трудно из-за вращения станции вместе с установленными на ней антеннами, т. е. вследствие изменения ориентации антенны по отношению к земным наблюдательным пунктам. Для того, чтобы связь со станцией не прекращалась при ее вращении, антенны станции излучают радиосигналы равномерно во всех направлениях, так что мощность излучения, приходящаяся на единицу поверхности, будет одинаковой для всех точек воображаемой сферы, в центре которой находится передатчик станции.
Ввиду того что в наземную приемную антенну попадает лишь часть излучаемой энергии, которая определяется отношением эффективной площади приемной антенны к поверхности воображаемой сферы с радиусом, равным расстоянию от космической станции до при-емкого пункта, то вполне естественным является стремление использовать большие приемные антенны, обладающие большим коэффициентом направленного действия.
В теории приемных антенн доказывается, что наибольшая полезная мощность, которую способна отдать приемная антенна на вход приемника, выражается формулой
где S — плотность потока электромагнитной энергии,
Величина коэффициента усиления
где ηΑ — к. п. д. антенны.
Допустим, что коэффициент направленного действия приемной антенны составляет 60, а к. п. д. — 0,9; тогда максимальная энергия принятого сигнала на входе приемного устройства для
Что же мешает приему таких сигналов? Казалось бы, что может быть проще: если надо получить на выходе приемного устройства определенный уровень сигнала, то нужно лишь увеличить число усилительных каскадов и проблема будет решена. Однако решение этой проблемы затрудняется не малой величиной принимаемого сигнала, а наличием помех радиоприему. Действительно, каким бы малым ни был входной сигнал, его можно усилить в любое число раз, но вместе с полезным сигналом усиливаются и паразитные сигналы. А если мощность шумов превышает мощность полезного сигнала, то каков смысл их совместного усиления?
Существует множество природных источников электромагнитных колебаний. Любая электрическая искра — это уже очаг возникновения электромагнитных волн. Непрерывно создаются радиопомехи атмосферными электрическими разрядами. Мешают радиоприему всевозможные промышленные установки и приборы, порождающие электромагнитные колебания. Такими установками являются высокочастотные промышленные устройства, электромедицинское оборудование, электротранспорт, автомобили, электросварочное оборудование и др. К внешним источникам шумов относят также непостоянство напряжений источников питания, механические вибрации и т. д. Кроме того, Земля облучается электромагнитными колебаниями космического происхождения. Все эти мешающие радиоизлучения по своей физической природе такие же, как и радиосигналы, — вот почему так трудно преградить им путь в радиоприемник.
Правда, в диапазоне волн, используемых на третьей космической ракете, внешние помехи действуют слабо. Но в этом радиодиапазоне, как и в любом другом, имеется еще один источник помех, не упоминавшийся нами ранее. Этим источником является само радио-приемное устройство. Появление помех в радиоприемнике объясняется так называемыми электрическими флуктуациями в его различных деталях и узлах (сопротивлениях, конденсаторах, катушках, радиолампах). Флуктуации приводят к тому, что на концах сопротивлений и в контурах приемника из-за беспорядочного движения свободных электронов непрерывно возникают меняющиеся электрические напряжения, даже тогда, когда на входе приемника нет никаких сигналов. При этом величина напряжения флуктуаций пропорциональна величине активной составляющей сопротивления цепи. Обычно для оценки величины флуктуационного напряжения пользуются его так называемым среднеквадратичным значением. Если величина активного сопротивления участка цепи не зависит от частоты, то спектр флуктуационного напряжения оказывается практически равномерным вплоть до ультравысоких частот. Для подсчета напряжения шума принимают во внимание лишь те частотные составляющие флуктуационного напряжения, которые лежат в пределах полосы пропускания устройства.
Мешающие напряжения порождаются и радиолампами. Ламповые шумы вызываются отклонениями величин анодного и сеточного токов от средних значений при неизменных напряжениях питания. Основная причина колебаний анодного и сеточного токов заключается в том, что ток эмиссии не остается постоянным вследствие непрерывного статистического изменения числа электронов, вылетающих из катода. Это явление носит название дробового эффекта.