Читаем Как было получено изображение обратной стороны Луны полностью

Однако добиться направленного действия антенны космической лаборатории трудно из-за вращения станции вместе с установленными на ней антеннами, т. е. вследствие изменения ориентации антенны по отношению к земным наблюдательным пунктам. Для того, чтобы связь со станцией не прекращалась при ее вращении, антенны станции излучают радиосигналы равномерно во всех направлениях, так что мощность излучения, приходящаяся на единицу поверхности, будет одинаковой для всех точек воображаемой сферы, в центре которой находится передатчик станции.

Ввиду того что в наземную приемную антенну попадает лишь часть излучаемой энергии, которая определяется отношением эффективной площади приемной антенны к поверхности воображаемой сферы с радиусом, равным расстоянию от космической станции до при-емкого пункта, то вполне естественным является стремление использовать большие приемные антенны, обладающие большим коэффициентом направленного действия.

В теории приемных антенн доказывается, что наибольшая полезная мощность, которую способна отдать приемная антенна на вход приемника, выражается формулой

где S — плотность потока электромагнитной энергии, вт/м2;

λ — длина волны, м;

GM наибольший коэффициент усиления антенны, под которым понимают число, показывающее, во сколько раз большая, мощность поступает на вход приемного устройства при приеме на антенну данного типа по сравнению с мощностью, которую можно получить, применяя в качестве приемной антенны простой полуволновый вибратор.

Величина коэффициента усиления Gм связана с коэффициентом направленности антенны D следующим соотношением:

где ηΑ — к. п. д. антенны.

Допустим, что коэффициент направленного действия приемной антенны составляет 60, а к. п. д. — 0,9; тогда максимальная энергия принятого сигнала на входе приемного устройства для S = 0,364·10-18 вт/м2 и λ = 15 м будет равна:

Что же мешает приему таких сигналов? Казалось бы, что может быть проще: если надо получить на выходе приемного устройства определенный уровень сигнала, то нужно лишь увеличить число усилительных каскадов и проблема будет решена. Однако решение этой проблемы затрудняется не малой величиной принимаемого сигнала, а наличием помех радиоприему. Действительно, каким бы малым ни был входной сигнал, его можно усилить в любое число раз, но вместе с полезным сигналом усиливаются и паразитные сигналы. А если мощность шумов превышает мощность полезного сигнала, то каков смысл их совместного усиления?

Существует множество природных источников электромагнитных колебаний. Любая электрическая искра — это уже очаг возникновения электромагнитных волн. Непрерывно создаются радиопомехи атмосферными электрическими разрядами. Мешают радиоприему всевозможные промышленные установки и приборы, порождающие электромагнитные колебания. Такими установками являются высокочастотные промышленные устройства, электромедицинское оборудование, электротранспорт, автомобили, электросварочное оборудование и др. К внешним источникам шумов относят также непостоянство напряжений источников питания, механические вибрации и т. д. Кроме того, Земля облучается электромагнитными колебаниями космического происхождения. Все эти мешающие радиоизлучения по своей физической природе такие же, как и радиосигналы, — вот почему так трудно преградить им путь в радиоприемник.

Правда, в диапазоне волн, используемых на третьей космической ракете, внешние помехи действуют слабо. Но в этом радиодиапазоне, как и в любом другом, имеется еще один источник помех, не упоминавшийся нами ранее. Этим источником является само радио-приемное устройство. Появление помех в радиоприемнике объясняется так называемыми электрическими флуктуациями в его различных деталях и узлах (сопротивлениях, конденсаторах, катушках, радиолампах). Флуктуации приводят к тому, что на концах сопротивлений и в контурах приемника из-за беспорядочного движения свободных электронов непрерывно возникают меняющиеся электрические напряжения, даже тогда, когда на входе приемника нет никаких сигналов. При этом величина напряжения флуктуаций пропорциональна величине активной составляющей сопротивления цепи. Обычно для оценки величины флуктуационного напряжения пользуются его так называемым среднеквадратичным значением. Если величина активного сопротивления участка цепи не зависит от частоты, то спектр флуктуационного напряжения оказывается практически равномерным вплоть до ультравысоких частот. Для подсчета напряжения шума принимают во внимание лишь те частотные составляющие флуктуационного напряжения, которые лежат в пределах полосы пропускания устройства.

Мешающие напряжения порождаются и радиолампами. Ламповые шумы вызываются отклонениями величин анодного и сеточного токов от средних значений при неизменных напряжениях питания. Основная причина колебаний анодного и сеточного токов заключается в том, что ток эмиссии не остается постоянным вследствие непрерывного статистического изменения числа электронов, вылетающих из катода. Это явление носит название дробового эффекта.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука