Читаем Как было получено изображение обратной стороны Луны полностью

Принцип действия фотоэлектронного умножителя рассмотрим на примере многокаскадного фотоэлектронного умножителя, схематическое изображение электродов которого приведено на рис. 11. В приборе имеется несколько электродов, на поверхность которых нанесен активирующий слой цезия. Первый из электродов является фотокатодом, а последний — анодом. Фотокатод здесь по форме подобен промежуточным электродам — эмиттерам. Он может быть выполнен также в виде полупрозрачного покрытия на внутренней поверхности той или иной части колбы умножителя. Перед фотокатодом на пути светового пучка помещена редкая проволочная сетка, препятствующая слишком сильному рассеянию электрического поля вблизи фотокатода. Число эмиттеров, располагаемых между фотокатодом и анодом, у разных приборов различно (до 16). Эмиттеры подключены к потенциометру так, что величина потенциала их увеличивается на одинаковую величину при увеличении порядкового номера электрода, начиная с фотокатода. Под действием светового потока с поверхности фотокатода испускаются электроны. Эти электроны ускоряются электрическим полем, бомбардируют первый эмиттер и выбивают с поверхности его электроны, причем количество вторичных (выбитых) электронов должно быть больше числа первичных электронов. Такой эффект достигается благодаря определенному выбору материала и соответствующей обработке поверхности эмиттеров. Применяемые в настоящее время эмиттеры испускают пять и более электронов на один первичный электрон. Иными словами, коэффициент вторичной электронной эмиссии поверхности эмиттера равен 5 и более.

Рис. 11. Электродная система фотоэлектронного умножителя. ФК — фотокатод; Э1—Э7 эмиттеры; А — анод; С — световой пучок; П — проволочная сетка.

Вторичные электроны, вылетевшие из первого эмиттера, попадают на второй эмиттер, находящийся под большим потенциалом относительно катода, и выбивают из него еще большее число вторичных электронов. Таким образом, электронный поток на пути от фотокатода к аноду непрерывно возрастает и в цепи анода появляется ток, значительно превосходящий фототок катода. Практически удается получить усиления фототока внутри прибора до 1 млн. раз, а в приборах усложненной конструкции усиление достигает 1 млрд. раз. Усиление К фотоэлектронного умножителя будет зависеть от величины коэффициента вторичной электронной эмиссии б и количества эмиттеров п следующим образом:

Для того чтобы действительный коэффициент усиления приближался по своей величине к расчетному, определяемому по этой формуле, необходимо, чтобы все вторичные электроны попадали с каждого предыдущего эмиттера на последующий, а не пролетали мимо. Если часть электронов минует один или несколько эмиттеров, не «умножаясь» на них, то общий коэффициент усиления снижается. Для того, чтобы вторичные электроны не пролетали мимо соседних эмиттеров, им придана специальная ковшеобразная форма. Такая форма эмиттеров была найдена после тщательных исследований.

Последний эмиттер отличается по форме от остальных и выполнен так, чтобы анод можно было поместить достаточно близко от его поверхности. При этом пространственный заряд, который может образоваться скапливающимися электронами, рассасывается, чем обеспечивается линейность усиления. Анод в описываемом здесь фотоумножителе представляет собой рамку с натянутыми на ней проволочными нитями.

По такой схеме построена умножающая часть многих фотоэлектронных умножителей, выпускаемых нашей промышленностью.

Существует несколько типов фотоэлектронных множителей, в которых электронные потоки с одного эмиттера на другой направляются несколько иначе. В одном случае для направления электронных потоков используется специальный, общий для всех эмиттеров электрод — сетка. В другом случае эмиттеры умножителя устроены так, что первичные электроны бомбардируют их с одной стороны, а вторичные электроны выходят с противоположной стороны; такие эмиттеры располагаются один за другим.

В третьем случае фокусировка электронов осуществляется взаимодействием магнитного и электрического полей и движущихся электронов.

Сигналы на нагрузочном сопротивлении фотоэлектронного умножителя ничтожны по своей величине, и потому они подводятся к усилителю, а после усиления и смешения с синхронизирующими и гасящими импульсами, создаваемыми в схеме синхрогенератора, поступают в радиопередатчик. В передатчике высокочастотные сигналы модулируются сигналами изображения. Процесс модуляции, как известно, заключается в том, что в соответствии с изменениями величины и частоты сигнала изображения происходит изменение одного из параметров колебаний высокой частоты (амплитуды, фазы или частоты). Применяются и другие виды модуляции. Так, например, в радиофототелеграфии сигналы изображений часто передают методами амплитудной и частотной модуляций вспомогательной несущей частоты. Полученным частотно-модулированным сигналом модулируют затем амплитуду колебаний высокой несущей частоты радиопередатчика.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука