Читаем Как было получено изображение обратной стороны Луны полностью

Разложение изображения на элементы отдельных строк может быть осуществлено и другими способами. Здесь описывалась развертка изображения бегущим световым пятном. В качестве средства развертки в ней была применена используемая в телевидении проекционная электронно-лучевая трубка. Трубка эта являлась источником световой энергии. Экран ее прочерчивался в определенной последовательности электронным пучком, создавая соответствующую перемещению пучка последовательность световых вспышек. С помощью объектива перемещающееся световое пятно с экрана трубки проецируется на фотопленку с негативным изображением обратной стороны Луны; при этом в каждый отдельный момент времени просвечивается только один элемент негатива. Пропущенный фотопленкой свет попадает затем на катод фотоэлектронного умножителя, и на выходе последнего возникает электрический сигнал. При скольжении светового пятна по поверхности пленки в соответствии с изменением плотности ее изменяется и величина светового потока, а следовательно, и сигнал изображения. Таким образом, в данном случае используется телевизионная система мгновенного действия, в которой световой поток с каждого элемента объекта используется только в течение короткого интервала времени: пока световое пятно совпадает с данным элементом изображения, на фотокатод фотоэлектронного умножителя в каждый момент воздействует световой поток только от одного элемента изображения.


Рис. 9. Образование растра на экране трубки электронным лучом, перемещающимся под воздействием горизонтального (х) и вертикального (V) отклоняющих электрических полей.


Устройство электронно-лучевой трубки с электростатическим отклонением и принцип электронной развертки поясняет рис. 10. Электронно-лучевая трубка состоит из следующих основных элементов: электронного прожектора, фокусирующей системы, отклоняющей системы и люминесцирующего экрана. Все электроды трубки заключены в стеклянный баллон, из которого выкачан воздух, с тем чтобы атомы газа не мешали движению электронного пучка. В зависимости от способа фокусировки и отклонения электронного пучка различают несколько типов электронно-лучевых трубок.


Рис. 10. Устройство электронно-лучевой трубки с электростатическим управлением.1 — нить накала; 2 — катод; 3— управляющий электрод; 4 — первый анод; 5 — электропроводящее покрытие; 6 — второй анод; 7 — пластины горизонтального отклонения; 8 — пластины вертикального отклонения; 9 — стеклянная колба трубки; 10 — слой люминесцирующего вещества (экран трубки).


Электронный прожектор трубки состоит из нескольких электродов, служащих для создания фокусировки и изменения интенсивности электронного пучка. Прожектор устанавливается соосно с горловиной колбы трубки и содержит подогревный катод, управляющий электрод и два коаксиальных цилиндра, называемых первым и вторым, анодами. Катод представляет собой никелевый цилиндр с плоским или слегка вогнутым дном. Углубление в центральной части катода заполняется стойким оксидом — хорошим источником электронов. Катод подогревается вольфрамовой нитью, покрытой изолирующим жароупорным материалом.

За катодом размещается управляющий электрод, представляющий собой полый цилиндр с отверстием, расположенным против центра катода. Управляющему электроду сообщается отрицательный (до нескольких десятков вольт) потенциал относительно катода. Изменение величины этого напряжения изменяет интенсивность тока луча и соответственно яркость свечения экрана.

Первый анод выполняется в виде полого цилиндра с плоским дном, имеющим отверстие, обращенное к катоду. Назначением этого электрода является создание вблизи катода электрического поля большой напряженности, необходимого для формирования электронного пучка. Внутри анода помещено несколько перегородок с отверстиями — диафрагм, которые задерживают электроны, траектории которых отклонены от оси.

Второй анод соединяется с внутренним проводящим покрытием баллона трубки и имеет потенциал, в 3—10 раз более высокий, чем потенциал первого анода. Потенциал второго анода определяет скорость электронов, бомбардирующих экран. Между первым и вторым анодами образуется главное фокусирующее поле, стягивающее электроны в узкий пучок.

Экран трубки состоит из тонкого слоя люминофора, нанесенного на внутреннюю поверхность передней стенки колбы. Быстро движущиеся электроны бомбардируют люминофор и отдают ему при этом свою энергию. Последняя частично выделяется в виде тепла, а частично возбуждает атомы кристаллического люминофора, что проявляется в виде излучения электромагнитных колебаний различных частот, включая видимую область спектра. Состав люминофора и способ его нанесения определяют цвет, яркость свечения и способность люминофора сохранять свечение после прекращения облучения электронным пучком. Время, в течение которого сохраняется свечение, называется временем послесвечения.

Перейти на страницу:

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия
Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия

Известный физик-теоретик, доктор философии и популяризатор науки дает собственный прогноз о нашем будущем. Автор этой книги уверен: совсем скоро людям придется покинуть родную планету и отправиться в космос. Потому что грядет глобальный кризис, несущий угрозу всему живому на Земле…По мнению Митио Каку, людям предстоит стать «двухпланетным видом», как когда-то метко выразился астрофизик Карл Саган. В этой книге ученый рассматривает проблемы, ждущие нас во время освоения космоса, а также возможные пути их решения.Вы узнаете, как планируется колонизировать Марс, что уже сделано для покорения этой планеты, прочтете о новейших достижениях в сфере строительства звездолетов. Ознакомитесь с прогнозом ученого о том, могут ли люди обрести бессмертие. Откроете, как в научном мире относятся к возможности существования внеземных цивилизаций. И вместе с автором поразмышляете над тем, что произойдет, когда человечество сможет выйти за пределы Вселенной…

Митио Каку , Мичио Каку

Астрономия и Космос / Педагогика / Образование и наука
История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука