Еще один клиент Key Survey — National Leisure Group (NLG), крупная круизная компания с годовым доходом около 700 млн дол.
Джуллианна Хейл — директор National Leisure Group по человеческим ресурсам и внутренним коммуникациям. сначала она пользовалась услугами Key Survey только для решения задач, стоявших перед отделом человеческих ресурсов, в частности для оценки удовлетворенности сотрудников, результатов работы коучей и эффективности тренингов, но позже она увидела возможность оценить и удовлетворенность туристов. Она говорит: «Работающим в туризме каждый пенни дается с боем. Норма прибыли в нашей отрасли очень низка». В этих условиях было особенно важно определить, насколько положительным является имидж NLG в глазах клиентов. «У нас была масса турагентов, но клиенты редко снова приходили к нам, — объясняет Хейл. — Поэтому мы создали отдел по изучению впечатлений клиентов и начали оценивать их удовлетворенность. Убедить руководство в необходимости таких измерений удалось не сразу. Пришлось выдержать настоящий бой».
Каждые шесть — восемь месяцев Key Survey проводила опросы клиентов, обслуживаемых разными отделами NLG. Желая сэкономить время потребителей, компания старалась делать это эффективно. Хейл вспоминает: «Было несколько вариантов опроса потребителей, но в конце концов утвердили два». Одна группа вопросов автоматически отсылалась по электронной почте сразу после того, как клиент оформил заказ, а вторая — по возвращении из круиза. Хейл говорит: «Мы просто хотели посмотреть, какие результаты получим. На первый вариант опроса отвечали 4–5 % туристов, но на второй — уже 11,5 %». Такой процент отклика считается высоким. Разумно используя простые средства контроля, NLG сравнивает ответы на вопросы типа «Порекомендуете ли вы нас своим друзьям?» до и после того, как клиент побывает в круизе, чтобы определить, повысились ли баллы после путешествия.
Обнаружив, что после круиза удовлетворенность клиентов падает, NLG решила реализовать специальную программу обучения турагентов. Хейл говорит: «Нам нужно было научить их торговать по-новому и предлагать маршруты, более подходящие клиентам». Измерение помогло выявить проблему и уже поэтому оказалось успешным. Теперь компании необходимо оценить эффект реализации новой программы.
Рынки предсказаний: проведение измерений с эффективностью Уолл-стрит
Интернет сделал возможным новый динамичный способ проведения измерений, объединяющий мнения по механизму, аналогичному фондовому рынку. Когда экономист говорит, что фондовый рынок «эффективен», он имеет в виду, что постоянно опережать рынок очень трудно. Курс любых акций в любой момент времени может с одинаковой вероятностью как упасть, так и повыситься. Будь это не так, участники рынка только продавали или только покупали бы эти акции до тех пор, пока равновесие не восстановится.
Результатом процесса сбора суждений является прогноз, более точный, чем индивидуальное мнение любого отдельного участника рынка. Преимущество данного процесса по сравнению с опросами общественного мнения заключается в том, что у участников есть стимул к тому, чтобы не только тщательно продумывать все вопросы, но даже (особенно, если на кону большие деньги) приобретать на собственные средства новую информацию об инвестициях, необходимую для анализа. У людей, которые ведут себя нерационально, быстро кончаются деньги, и они уходят с рынка. Именно они и создают «случайный шум», уравновешивая друг друга на крупном рынке, поскольку из-за своей нерациональности обычно либо переоценивают, либо недооценивают акции. А поскольку рынок поощряет активное участие, новости об изменении стоимости компании быстро находят отражение в курсе ее акций.
Именно такой механизм пытаются использовать новые «рынки предсказаний». По данным исследований, они появились еще в начале 1990-х годов, но широкую известность получили только в 2004 г. благодаря знаменитой книге Джеймса Шуровьески «Мудрость толпы. Почему вместе мы умнее, чем поодиночке, и как коллективный разум влияет на бизнес, экономику, общество и государство»[54]
. Благодаря нескольким программным приложениям и открытым веб-сайтам появились «рынки» предсказаний того, кто, например, получит кинопремию «Оскар» за лучшую женскую роль или кто станет кандидатом в президенты от республиканцев. Примеры существующих рынков предсказаний приводятся в таблице 13.1.