Существуют полезные способы измерения, гораздо менее сложные, чем вы предполагаете. Представьте, что первый пришедший вам на ум способ — самый трудный. Представьте, что, проявив чуть больше изобретательности, вы сможете найти более простой метод. Например, Кливлендский оркестр захотел оценить, улучшается ли со временем качество его исполнения произведений. Многие бизнес-аналитики предложили бы руководству оркестра проводить периодические опросы случайно выбранных постоянных слушателей, пришедших на концерт. Возможно, они предложили бы этим людям оценить то или иное выступление оркестра (если те его помнят) по шкале от «плохое» до «блестящее» или по нескольким параметрам, на основе которых потом можно было бы рассчитать общий показатель удовлетворенности. Но Кливлендский оркестр подошел к этой проблеме творчески и начал подсчитывать, сколько раз публика устраивала овации стоя. Если слушатели вставали не два раза, а три, то, очевидно, выступления отличались не слишком сильно. Но если с появлением нового дирижера публика стала устраивать бурные овации, поднимаясь из кресел намного чаще, то мы можем сделать весьма ценные выводы по поводу этого дирижера. Да, это было измерением в полном смысле слова, и оно потребовало гораздо меньше усилий, чем проведение опроса, дав, как сказали бы многие (и я бы с ними согласился), более содержательные результаты.
Итак, не стоит исходить из того, что единственный способ уменьшить неопределенность — это использовать какой-то сложный, практически нецелесообразный метод. Что вы собираетесь делать — публиковаться в научном журнале или сокращать неопределенность при принятии реального бизнес-решения? Отнеситесь к измерению как к итеративному процессу. Начните измерять то, что вам нужно. Получив первые результаты, вы всегда сможете скорректировать свой метод.
Самое главное, как это следует из этимологии слова «эксперимент», интуитивный экспериментатор делает попытку. Сделайте ее и вы. За исключением тех случаев, когда заранее можно предсказать результат какого бы то ни было наблюдения, оно обязательно расскажет то, чего вы не знали ранее. Сделайте еще несколько наблюдений — и узнаете больше.
Конечно, бывают такие редкие случаи, когда объекты или явления кажутся не поддающимися количественной оценке только из-за отсутствия современных изощренных методов. Но обычно для измерения большинства вещей, называемых нематериальными, не хватает вовсе не передовых замысловатых способов. Как правило, неопределенность в отношении подобных объектов так велика, что уменьшить ее позволяют и базовые методы измерения.
Экономические возражения против проведения измерений
Как мы видели, сомнения в концепции, объекте и методе измерения зачастую связаны с ошибочным восприятием проблемы. Однако иногда возражения против измерений основываются не на уверенности в их невозможности, а на убеждении, что проводить их не следует.
На мой взгляд, измерения не следует осуществлять в одном случае — если издержки, связанные с их проведением, превышают получаемые выгоды. Однако на практике, конечно, встречается и такое. В 1995 г. я разработал метод оценки неопределенности, рисков и других нематериальных факторов, влияющих на принятие любого крупного рискованного решения, который назвал прикладной информационной экономикой (applied information economics, AIE). Ключевой этап данного процесса (и этим объясняется название метода) — расчет экономической стоимости информации. Позже поговорим об этом подробнее, но проверенная формула из теории решений позволяет рассчитать денежную стоимость любого снижения неопределенности. Я вставил эту формулу в программу Excel и годами рассчитываю экономическую стоимость измерения любых величин, учитываемых при принятии десятков важных бизнес-решений. Благодаря этим расчетам я обнаружил ряд любопытных закономерностей, но пока упомяну только об одной: информационная ценность большинства переменных, учитываемых при принятии бизнес-решений, равна нулю. В каждом случае оказывалось, что число факторов, которые имеют для принятия решения значение, оправдывающее усилия по их оценке, не более четырех.
В каждом случае лишь несколько ключевых переменных имеют значение, оправдывающее усилия по их определению. Информационная ценность остальных равна или практически равна нулю.