Я обучил 16 аналитиков Giga использованию описанных выше приемов. В конце занятий я попросил их высказать свое согласие или несогласие с 20 конкретными прогнозами, касавшимися индустрии информационных технологий, и указать степень уверенности в своих оценках. Это задание они выполняли в январе 1997 г., а во всех прогнозах речь шла о событиях, которые могли произойти до 1 июня того же года (например, участники должны были указать, верно или неверно предположение, что Intel выпустит до 1 июня свой процессор Pentium 300 МГц и т. д.). В качестве контрольного эксперимента я познакомил с этими предсказаниями 16 руководителей информационных служб различных организаций. После 1 июня мы могли уже определить, какие прогнозы сбылись, а какие нет. О полученных результатах я рассказал на крупном симпозиуме Giga World (см. рис. 5.3).
По горизонтали отложены указанные участниками занятий вероятности правильной оценки прогноза, по вертикали — процент сбывшихся прогнозов. Результаты идеально калиброванного эксперта представлены пунктиром. Такой специалист оказывается прав в 70 % случаев, если уверен в своих предсказаниях на 70 %; в 80 % случаев, если уверен в своих предсказаниях на 80 %, и т. д. Вы видите, что результаты аналитиков Giga (обозначенные квадратиками) в пределах допустимой погрешности были очень близки к идеальной уверенности. Сильнее всего эти результаты отклоняются от «идеальной калибровки» в нижней части шкалы, но и здесь это отклонение не превышает допустимой ошибки (в левой части графика интервал допустимой ошибки шире, а в правой он сужается до нуля). Участники оказались правыми в 65 % всех случаев, когда они указали, что уверены на 50 %. Это означает, что они знали больше, чем полагали, и что были недостаточно уверены в себе (только в этой части шкалы). Но это отклонение невелико и вполне могло объясняться случайностью. Имеется вероятность 1 % того, что не менее 44 человек из 68 угадают ответ, просто подбросив монету. В другой части шкалы это отклонение более значительно, по крайней мере статистически, если не визуально. Случайностью могло бы объясняться несколько меньшее отклонение от ожидаемого, поэтому в этой части шкалы слушатели несколько самоувереннее. Но в целом они очень хорошо калиброваны.
Для сравнения, результаты клиентов Giga (обозначенные треугольниками), не прошедших тренинга по калибровке, показали их чрезмерную самонадеянность в прогнозировании. Цифры рядом с результатами калибровки означают, например: тот или иной клиент 58 раз указывал, что уверен в правильности данного прогноза на 90 %. Однако сбылось только 60 % таких предположений. Клиенты (21 %), заявившие, что убеждены в правильности прогноза на 100 %, угадали только в 67 % случаев.
Не менее интересен тот факт, что у аналитиков Giga правильных ответов оказалось не больше (вопросы были составлены по отрасли в целом, а не по узким направлениям специализации аналитиков). Просто они проявили большую (но не чрезмерную) осторожность, указывая процент уверенности в своей оценке прогноза. Однако до участия в занятиях аналитики, отвечая на вопросы общего характера, так же плохо оценивали неопределенность, как и клиенты, оценивавшие достоверность прогнозов реальных событий. Вывод очевиден: разница в точности определяется только занятиями по калибровке способности слушателей оценивать шансы, весьма действенной в реальных жизненных ситуациях.
Хотя у некоторых участников занятий и возникали трудности с калибровкой, большинство воспринимают ее с готовностью и считают способность оценивать шансы важнейшим навыком, необходимым для проведения измерений. Пат Планкетт, менеджер по оценке эффективности информационных технологий Министерства жилищного строительства и городского развития (Department of Housing and Urban Development), пожалуй, лучше всех в американском правительстве разбирается в использовании показателей эффективности. Он знаком со многими специалистами различных учреждений, прошедшими калибровку с 2000 г. Планкетт в 2000 г. еще работал в Управлении служб общего назначения (General Service Administration, GSA), и именно он стоял за экспериментом Совета директоров по информационным технологиям при федеральном правительстве США и рекомендовал Управлению по делам ветеранов внедрить эти методы. Планкетт считает калибровку серьезным шагом вперед в решении проблемы неопределенности. Он сказал: «Калибровка открыла нам глаза. Многие, включая меня самого, обнаружили, что излишне оптимистичны, делая оценки. Калибровка делает вас другим человеком. Вы приобретаете обостренную способность оценивать степень неопределенности».