Ферми использовал метод Монте-Карло для того, чтобы рассчитать поведение большого числа нейтронов. В 1930 г., начиная работу над данной проблемой, он осознавал, что ее нельзя решить обычными методами интегрального исчисления. Однако можно было присвоить некие вероятности определенным результатам при заданных условиях. Ученый понял, что можно взять наугад несколько таких ситуаций и выяснить, как будет себя вести большое число нейтронов в системе. В 1940-х и 1950-х годах несколько математиков продолжили работу над аналогичными проблемами ядерной физики и начали использовать компьютеры для составления случайных сценариев. Наибольшую известность получили труды Станислава Улама, Джона фон Нейманна и Николаса Метрополиса. Сначала они работали над созданием атомной бомбы (Манхэттенский проект), а позднее — водородной бомбы в Лос-Аламосе. По предложению Метрополиса Улам назвал свой метод компьютерного генерирования случайных сценариев методом Монте-Карло в честь своего дяди — азартного игрока[22]
.То, что начал Ферми и в последствии продолжили Улам, фон Нейманн и Метрополис, сегодня широко используется в бизнесе, государственном управлении и научных исследованиях. Этот метод применяется, в частности, для определения доходности инвестиций в случае, когда точные затраты и выгоды не известны. Как-то руководитель информационной службы одной чикагской инвестиционной компании советовалась со мной по поводу того, как определять ценность информационной технологии. Она сказала: «Мы очень неплохо научились оценивать риски, но даже не представляем себе, как можно рассчитать выгоды».
При ближайшем рассмотрении ситуация оказалась очень любопытной. Она объяснила, что, вкладывая средства в информационные технологии, компания прежде всего старается добиться повышения на несколько базисных пунктов (1 б. п. = 0,01 %) доходности инвестиций, которыми она управляет по поручению своих клиентов. Руководство надеется, что грамотные инвестиции в ИТ позволят добиться конкурентного преимущества в сборе и анализе данных, на основе которых принимаются инвестиционные решения. Но когда я спросил свою собеседницу, как компания оценивает выгоды сейчас, она ответила, что специалисты «просто выбирают число наугад». Иными словами, пока достаточное число людей соглашались или, по крайней мере, не возражали против предложенного значения, отражающего рост базисных пунктов, именно на нем и строилось экономическое обоснование решения. Конечно, выбранный параметр мог отражать предыдущий опыт, но очевидно, что в нем руководство могло быть уверено не больше, чем в любых других значениях. Но если это так, то как же компания измеряет свои риски? Ясно, что самой серьезной опасностью оказалась бы связанная с неопределенностью получения данной выгоды по сравнению с другими. Компания не пользовалась интервалами значений для выражения неопределенности в росте базисных пунктов, поэтому включить ее в расчет риска было невозможно. Таким образом, хотя руководитель ИТ-службы была убеждена, что в фирме хорошо анализируют риски, похоже, что на самом деле их там даже не рассчитывали.
В действительности весь инвестиционный риск можно выразить количественно одним-единственным способом: задав интервалы значений неопределенностям, связанным с затратами и выгодами от решения. Когда вы точно знаете сумму и сроки осуществления затрат и получения выгод (что предполагается при традиционном экономическом обосновании проектов, когда используются точные числа), риск буквально не существует. Ведь выгоды или затраты не могут оказаться ниже или выше ожидавшихся. Но на самом деле все, что мы о них знаем, — это интервалы, а не точные параметры. А раз у нас есть только широкие интервалы значений, значит, существует и вероятность отрицательной доходности. Вот что лежит в основе оценки риска, и вот для чего служит моделирование методом Монте-Карло.
Пример применения метода Монте-Карло и расчета риска
Приведем очень простой пример моделирования методом Монте-Карло для тех, кто никогда не работал с ним ранее, но имеет определенное представление об использовании электронных таблиц Excel. А люди, уже пользовавшиеся данным методом, могут просто пропустить несколько следующих страниц.
Предположим, что вы хотите арендовать новый станок для некоего этапа производственного процесса. Стоимость годовой аренды станка 400 000 дол., и договор нужно подписать сразу на несколько лет. Поэтому, не достигнув точки безубыточности, вы не сможете сразу вернуть станок. Вы собираетесь подписать договор, думая, что современное оборудование позволит сэкономить на трудозатратах и стоимости сырья и материалов, а также поскольку считаете, что материально-техническое обслуживание нового станка обойдется дешевле.
Ваши калиброванные специалисты по оценке дали примерные интервалы значений ожидаемой экономии. Кроме того, они рассчитали ожидаемые годовые объемы производства для данного процесса:
Рассчитаем теперь годовую экономию по следующей очень простой формуле: