Чтобы оценить полученные результаты, можно использовать пару других простых инструментов, имеющихся в Excel. Функция «=countif()» позволяет рассчитывать значения величин, отвечающие определенному критерию, — в данном случае те значения годовой экономии, которые меньше 400 000 дол. Или же для полноты картины вы можете воспользоваться инструментом построения гистограмм из Analysis Toolpack. Он подсчитает число сценариев в каждой области, или инкрементной группе значений. Затем вы строите график, отображающий результаты расчета (см. рис. 6.2). Этот график показывает, сколько из 10 000 сценариев будут иметь годовую экономию в том или ином интервале значений. Например, в более чем 1000 сценариев годовая экономия составит от 300 000 до 400 000 дол.
Из всех полученных значений годовой экономии примерно 14 % будут меньше 400 000 дол. Это означает, что вероятность ущерба составляет 14 %. Данное число и представляет содержательную оценку риска. Но риск не всегда сводится к возможности отрицательной доходности инвестиций. Оценивая размеры вещи, мы определяем ее высоту, массу, обхват и т. д. Точно так же существуют и несколько полезных показателей риска. Дальнейший анализ показывает: есть вероятность 3,5 % того, что завод вместо экономии будет терять ежегодно по 100 млн дол. Однако полное отсутствие доходов практически исключено. Вот что подразумевается под анализом риска — мы должны уметь рассчитывать вероятности ущерба разного масштаба. Если вы действительно измеряете риск, то должны делать именно это. С дополнительным материалом к данному примеру можно ознакомиться на сайте www.howtomeasureanything.com
В некоторых ситуациях можно пойти более коротким путем. Если все распределения значений, с которыми мы работаем, будут нормальными и нам надо просто сложить интервалы этих значений (например, интервалы затрат и выгод) или вычесть их друг из друга, то можно обойтись и без моделирования методом Монте-Карло. Когда необходимо суммировать три вида экономии из нашего примера, следует провести простой расчет. Чтобы получить искомый интервал, используйте шесть шагов, перечисленных ниже:
1) произвести вычитание среднего значения каждого интервала значений из его верхней границы. Для экономии на материально-техническом обслуживании — 20–15 = 5 (дол.), для экономии на трудозатратах — 5 дол. и для экономии на сырье и материалах — 3 дол.;
2) возвести в квадрат результаты первого шага — 52
= 25 (дол.) и т. д.;3) суммировать результаты второго шага — 25 + 25 + 9 = 59 (дол.);
4) извлечь квадратный корень из полученной суммы (получится 7,68 дол.);
5) сложить все средние значения: 15 + 3 + 6 = 24 (дол.);
6) прибавить к сумме средних значений или вычесть из нее результат шага 4 и получить в итоге верхнюю и нижнюю границы диапазона: 24 + 7,68 = 31,68 (дол.) — верхняя граница; 24–7,68 = 16,32 (дол.) — нижняя граница.
Таким образом, 90-процентный доверительный интервал для суммы трех 90-процентных доверительных интервалов по каждому виду экономии составляет 16,32–31,68 дол. В итоге область значений (размах) суммарного интервала равна квадратному корню из суммы квадратов областей значений отдельных интервалов.
Иногда нечто похожее делают, суммируя все «оптимистические» значения верхней границы и «пессимистические» значения нижней границы интервала. В данном случае мы получили бы на основе наших трех 90-процентных доверительных интервалов суммарный интервал 11–37 дол. Этот интервал несколько шире, чем 16,32–31,68 дол. Когда такие расчеты выполняются при обосновании проекта с десятками переменных, расширение интервала становится чрезмерным, чтобы его игнорировать. Брать самые «оптимистические» значения для верхней границы и «пессимистические» для нижней — все равно что думать: бросив несколько игральных костей, мы во всех случаях получим только «1» или только «6». На самом же деле выпадет некое сочетание низких и высоких значений. Чрезмерное расширение интервала — распространенная ошибка, которая, несомненно, часто приводит к принятию необоснованных решений. В то же время описанный мной простой метод прекрасно работает, когда у нас есть несколько 90-процентных доверительных интервалов, которые необходимо суммировать.
Однако наша цель не только суммировать интервалы, но и умножить их на объем производства, значения которого также даны в виде диапазона. Простой метод суммирования годится только для вычитания или сложения интервалов значений.
Моделирование методом Монте-Карло требуется и тогда, когда не все распределения являются нормальными. Хотя другие типы распределений не входят в предмет данной книги, упомянем о двух из них — равномерном и бинарном (см. рис. 6.3 и 6.4). И то и другое нам еще встретится, когда мы будем обсуждать стоимость информации.
Инструменты и другие ресурсы для моделирования методом Монте-Карло