В 1999 г. мне довелось вести семинар для группы менеджеров, желавших научиться анализировать риски в сфере ИТ. Я начал рассказывать о методе Монте-Карло и спросил, пользуется ли уже кто-нибудь им для оценки рисков. Обычно те, кто утверждает, что рассчитывает риски, просто характеризуют их значения как «высокое», «среднее» или «низкое», даже не пытаясь дать им количественную оценку. Моя цель — помочь слушателям понять разницу между подобным псевдоанализом и расчетом, приемлемым с точки зрения актуария. Один из студентов сказал, что регулярно использует метод Монте-Карло для оценки риска. Это произвело на меня впечатление: «До сих пор мне не встречались специалисты по ИТ, которые пользовались бы данным методом». На это он сказал: «Нет, я не эксперт в информационных технологиях. Я занимаюсь анализом производственных методов в Boise Gascade, целлюлозно-бумажной и деревообрабатывающей компании». На мой вопрос «А что, по вашему мнению, более рискованно — инвестиции в ИТ или в производство бумаги?» он ответил: инвестиции в ИТ рискованнее, но добавил, что его компания никогда не применяет метод Монте-Карло для оценки риска в этой сфере.
Если организация и применяет количественный анализ рисков, то обычно это делается для принятия повседневных оперативных решений. Самые серьезные и опасные решения (чаще всего) формулируются при минимальном использовании полноценного анализа риска.
С годами я обнаружил, что если организация и применяет количественный анализ рисков, то обычно это делается для принятия повседневных оперативных решений. Самые серьезные и опасные решения чаще всего принимаются без предварительного анализа рисков, связанных с ними, — по крайней мере, таких исследований, с которыми согласился бы актуарий или статистик, не проводится. Я назвал этот феномен «парадоксом риска».
Почти все самые сложные методы анализа риска применяются при принятии простых решений, почти не влекущих серьезных негативных последствий, однако решения о слияниях, крупных инвестициях в ИТ, финансировании научных исследований и т. д. обычно формируются без этой процедуры. Почему так происходит? Может быть, из-за существующего мнения о том, что оперативные решения (одобрение кредита или расчет страховой премии) количественно оценить намного проще в отличие от действительно сложных проблем, связанных с рисками, которые с трудом поддаются точному расчету. Это серьезное заблуждение. Как я уже показал, в важных решениях нет ничего «неизмеримого».
Теперь, когда вы уже познакомились с конкретными количественными понятиями неопределенности и риска, мы можем перейти к изучению редко используемого, но очень полезного инструмента измерения: расчета стоимости информации.
Глава 7. Оценка стоимости информации
Сумев рассчитать стоимость самой информации, мы смогли бы определить на ее основе затраты на проведение измерений. Зная же данную стоимость, мы, возможно, предпочли бы измерять совсем другие вещи. Вероятно, мы потратили бы больше усилий и денег, оценивая то, что никогда не оценивали прежде, и потеряли бы интерес к тому, что постоянно количественно определяли до сих пор.
Первый уровень — мерить все, что легко поддается измерению. Этот подход не вызывает возражений. Второй — отбросить то, что трудно измеряется, или приписать ему произвольное количественное значение — искусственный, уводящий в сторону путь. Третий уровень — предположить, что все трудноизмеримое не имеет значения. Это страусиная политика. Четвертый этап — сказать, что измеряемое с трудом вообще не существует. Это самоубийство.
На самом деле существуют всего три главные причины тому, что информация имеет свою стоимость для бизнеса.
1. Информация снижает неопределенность в связи с решениями, имеющими экономические последствия.
2. Она влияет на поведение людей, и это также имеет экономические последствия.
3. Иногда информация сама обладает собственной рыночной стоимостью.