1) рассчитаем условный порог: RT = (Порог — WB) / (BB — WB). В нашем примере лучшая граница доверительного интервала равна 1 000 000, худшая — 100 000, а порог — 200 000 единиц продукции, поэтому RT = (200 000–100 000) / (1 000 000–100 000) = 0,11;
2) найдем местоположение RT на вертикальной оси рисунка 7.2;
3) двигаясь вправо от значения RT, мы видим две серии кривых: одну (слева) для нормальных и другую (справа) для равномерных распределений. Поскольку в нашем примере распределение является нормальным, найдем точку пересечения кривой для нормальных распределений с прямой, проведенной через значение RT параллельно горизонтальной оси. Я назову эту величину фактором ожидаемых потерь от упущенной благоприятной возможности (expected opportunity loss factor, EOLF). В данном случае EOLF равняется 15;
4) рассчитаем EVPI следующим образом: EVPI = EOLF / 1000 × OL на единицу продукции × (BB — WB). В нашем примере OL на единицу продукции равняется 25 дол., поэтому EVPI = 15/1000 × 25 × (1 000 000–100 000) = 337 500 дол. (см. рис. 7.2).
Расчет показывает, что затраты на проведение измерения (в данном случае на прогноз) объема продаж теоретически составят 337 500 дол. Это абсолютный максимум, определенный исходя из предпосылки, что измерение полностью устранит неопределенность. Хотя сделать это практически невозможно, данный простой метод предоставляет важный ориентир для максимально возможных расходов.
Порядок расчета для равномерного распределения тот же, за исключением, конечно, одного: нам потребуются кривые равномерного распределения. И при нормальном, и при равномерном распределении необходимо учитывать следующие важные оговорки. Во-первых, данный простой метод применим только к убыткам, имеющим линейный характер. Это означает, что на каждой непроданной единице продукции мы теряем фиксированную сумму — в нашем примере 25 дол. Eсли изобразить график зависимости потерь от числа проданных изделий, то он будет иметь вид прямой (окажется линейным). Но когда скорость изменения потерь оказывается непостоянной, график EOLF может оказаться недостаточно точным. Например, если в роли неизвестной выступает сложная процентная ставка, то график потерь при любом пороге не будет представлять собой прямую. Следует отметить и то, что когда речь идет об усеченном нормальном распределении или распределениях, отличающихся от нормальных и равномерных, график может оказаться недостаточно хорошим приближением.
Перейдите на ссылку «Value of Information Analysis» («Анализ стоимости информации»). Вы можете скачать подробный калькулятор на базе Excel для определения стоимости информации с примерами из этой книги.
Если вы проводите важные измерения с высокой стоимостью информации, возможно, стоит проделать описанные мною дополнительные расчеты и разбить распределение на большое число мелких фрагментов. Но чтобы не составлять такую таблицу с нуля, скачайте таблицы «Анализа стоимости информации» и примеры со вспомогательного веб-сайта www.howtomeasureanything.com
Мир несовершенен: стоимость частичного снижения неопределенности
В последнем примере с ожидаемой стоимостью полной информации мы оценили затраты на полное устранение неопределенности, а не ее снижение. Расчет EVPI полезен сам по себе, поскольку, по крайней мере, позволяет узнать потолок стоимости информации, который не должен быть превышен при осуществлении измерений. Однако нередко приходится довольствоваться простым снижением неопределенности, особенно когда речь идет о прогнозе, например, роста продаж в результате проведения рекламных кампаний. В таких случаях полезно знать не только максимальную сумму, которую можно израсходовать в идеальных условиях, но и во что обойдется измерение в реальной жизни (обязательно сопровождаемое реальной погрешностью). Иными словами, нам надо знать ожидаемую стоимость информации, а не ожидаемую стоимость полной информации.
Ожидаемую стоимость информации также лучше всего рассчитывать с помощью более сложного моделирования, но мы можем сделать несколько простых оценок. Для этого полезно мысленно представить себе, как выглядит график зависимости EVI от объема информации (см. рис. 7.3).
Кривая EVI обычно имеет выпуклый вид и асимптотический характер. Значит, стоимость информации сначала стремится к быстрому росту с каждым небольшим снижением неопределенности, а затем, когда неопределенность приближается к нулю, стабилизируется. Как видно из рисунка, стоимость информации растет очень быстро, выходя на асимптоту на уровне EVPI (которую, конечно, никогда не превышает).