Читаем Как измерить все, что угодно полностью

К счастью, сегодня вам не придется строить модель Монте-Карло с нуля. Существуют многочисленные инструменты, облегчающие труд знакомого с теорией аналитика и повышающие его эффективность. К ним относятся и простые наборы макросов для Excel (которыми пользуюсь я), и очень сложные пакеты программ.

Горячим сторонником использования метода Монте-Карло в бизнесе является профессор Стэнфордского университета Сэм Сэвидж, разработавший инструмент, названный им Insight.xls. Сэвидж предлагает интуитивный подход к использованию вероятностного анализа. Кроме того, у него есть кое-какие соображения по поводу формализации процедуры разработки моделей методом Монте-Карло. Если такими моделями пользуются разные подразделения одной и той же организации, то, по мнению Сэвиджа, ей следует иметь объединенную базу общих распределений, а не придумывать каждый раз новые распределения для одних и тех же величин. Более того, он считает, что само определение распределения величины часто представляет собой особую задачу, требующую некоторой математической подготовки.

У Сэвиджа есть интересный метод, который он называет управлением вероятностями: «Предположим, описание распределений вероятностей мы возьмем на себя. Чем тогда вы сможете оправдать свое нежелание пользоваться распределениями вероятностей? Некоторые говорят, что не умеют описывать распределение вероятностей. Однако как выработать электроэнергию, они тоже не знают, но все же ею пользуются».

Его идея заключается в том, чтобы ввести в компаниях такую должность, как ведущий специалист по вероятностям. Он будет отвечать за управление объединенной библиотекой распределений вероятностей, которой может пользоваться каждый, кто занимается моделированием по методу Монте-Карло. Сэвидж ввел такое понятие, как стохастический информационный пакет (stochastic information packet, SIP) — заранее разработанный набор из 100 000 случайных значений того или иного показателя. Иногда разные пакеты связаны друг с другом. Например, доход компании может согласовываться с темпами роста национальной экономики. Набор таких коррелирующих между собой стохастических информационных пакетов называется стохастическими библиотечными модулями с сохраненными зависимостями (stochastic library units with relationships preserved, SLURPs). Ведущий специалист по вероятностям будет управлять SIP и SLURPs таким образом, чтобы пользователям распределений вероятностей не приходилось изобретать велосипед всякий раз, когда нужно моделировать инфляцию или затраты на здравоохранение.

Я бы добавил еще несколько аспектов, тогда модели Монте-Карло будут создаваться и использоваться в организациях так же официально, как методы бухучета. Этими аспектами являются следующие:

• официальная процедура сертификации калиброванных специалистов. Проводя занятия, я заметил, что даже высококвалифицированные специалисты, постоянно пользующиеся моделями Монте-Карло, мало что слышали о калиброванной оценке вероятностей. Как мы уже говорили, некалиброванный эксперт обычно слишком уверен в своих оценках. Любой расчет риска на основе его предположений приведет к недооценке;

• хорошо задокументированная процедура построения моделей начиная с исходных оценок калиброванных специалистов. На отладку этой процедуры всегда уходит какое-то время. Организации в большинстве своем не нуждаются в разработке модели с нуля всякий раз, когда приходится анализировать новый инвестиционный проект. Можно воспользоваться результатами других предприятий или, по крайней мере, своими предыдущими моделями;

• единый набор компьютерных инструментов. Некоторые из них перечислены в таблице 6.2.


Парадокс риска

Построить модель методом Монте-Карло вряд ли сложнее, чем создать любую другую компьютерную экономическую модель. На самом деле модели, которые я разрабатывал для оценки рисков крупных проектов в области информатики, всегда оказывались более простыми, чем анализируемые информационные системы.

Сложны ли вообще модели Монте-Карло? Конечно, по некоторым меркам. Слишком ли они сложны для того, чтобы их можно было использовать в бизнесе? Нет, по современным деловым стандартам. К тому же, как и в любом другом трудном случае, руководство компании может пригласить специалистов, обладающих необходимыми навыками.

Несмотря на это, количественный анализ рисков с помощью метода Монте-Карло принят далеко не повсеместно. Многие организации пользуются при решении отдельных задач довольно сложными методами анализа риска. Например, актуарии в страховых компаниях определяют требования к страховому продукту, статистики анализируют рейтинги нового телешоу, а менеджеры используют подход Монте-Карло для моделирования изменения методов производства. Однако те же самые организации не пользуются регулярно теми же сложными методами анализа риска, принимая гораздо более важные решения в условиях серьезных неопределенностей и высоких вероятностей ущерба.

Перейти на страницу:

Похожие книги

Управление рисками
Управление рисками

Harvard Business Review – ведущий деловой журнал с многолетней историей. В этот сборник вошли лучшие статьи авторов HBR на тему риск-менеджмента.Инсайдерские атаки, саботаж, нарушение цепочек поставок, техногенные катастрофы и политические кризисы влияют на устойчивость организаций. Пытаясь их предотвратить, большинство руководителей вводят все новые и новые правила и принуждают сотрудников их выполнять. Однако переоценка некоторых рисков и невозможность предусмотреть скрытые угрозы приводят к тому, что компании нерационально расходуют ресурсы, а это может нанести серьезный, а то и непоправимый ущерб бизнесу. Прочитав этот сборник, вы узнаете о категориях рисков и внедрении процессов по управлению ими, научитесь использовать неопределенность для прорывных инноваций и сможете избежать распространенных ошибок прогнозирования, чтобы получить конкурентное преимущество.Статьи Нассима Талеба, Кондолизы Райс, Роберта Каплана и других авторов HBR помогут вам выстроить эффективную стратегию управления рисками и подготовиться к будущим вызовам.Способность компании противостоять штормам во многом зависит от того, насколько серьезно лидеры воспринимают свою функцию управления рисками в то время, когда светит солнце и горизонт чист.Иногда попытки уклониться от риска в действительности его увеличивают, а готовность принять на себя больше риска позволяет более эффективно им управлять.Все организации стремятся учиться на ошибках. Немногие ищут возможность почерпнуть что-то из событий, которые могли бы закончиться плохо, но все обошлось благодаря удачному стечению обстоятельств. Руководители должны понимать и учитывать: если люди спаслись, будучи на волосок от гибели, они склонны приписывать это устойчивости системы, хотя столь же вероятно, что сама эта ситуация сложилась из-за уязвимости системы.Для когоДля руководителей, глав компаний, генеральных директоров и собственников бизнеса.

Harvard Business Review (HBR) , Сергей Каледин , Тулкин Нарметов

Карьера, кадры / Экономика / Менеджмент / Финансы и бизнес
The Firm. История компании McKinsey и ее тайного влияния на американский бизнес
The Firm. История компании McKinsey и ее тайного влияния на американский бизнес

McKinsey сегодня – это не просто фирма с почти столетней историей, а один из символов постоянного и стабильного успеха. Именно ее консультанты помогли создать и распространить по всему миру то, что мы сейчас называем американским капитализмом.В чем причина столь глубокого и масштабного влияния компании на корпоративный мир Америки? Почему при широчайшей известности о ее внутренней «кухне» мы знаем ничтожно мало? Кто они, эти серые кардиналы, придумавшие консалтинг и сумевшие возвести его в ранг политики, инструмента управления компаниями и государствами? Каковы плоды и методы их беспрецедентного влияния на экономику целых отраслей? И наконец, как удается этой Фирме в течение почти целого века сохранять и приумножать свой авторитет, несмотря на ряд впечатляющих провалов?

Дафф Макдональд

Экономика