У человеческого разума действительно есть ряд замечательных преимуществ над обычными механическими инструментами измерения. Он обладает уникальной способностью оценивать сложные и неоднозначные ситуации, в которых другие средства бесполезны. Любой пятилетний ребенок справится с задачей распознавания лица или голоса человека в толпе, но разработчикам никак не удается научить этому программное обеспечение (хотя определенный прогресс в этом направлении уже и достигнут). И мы еще очень далеки от создания искусственного интеллекта, способного написать рецензию на кинофильм или бизнес-план. Человеческий разум — действительно непревзойденный инструмент истинно объективного измерения. Точнее, он был бы таковым, если бы не многочисленные допускаемые человеком систематические ошибки и заблуждения.
Не секрет, что человеческий мозг не просто машина для вычисления. Это сложная система, познающая окружающую среду и приспосабливающаяся к ней путем выработки разнообразных упрощающих правил. Практически все эти правила приносят правду в жертву простоте, а многие даже противоречат друг другу. Те, что не вполне обоснованны, но, тем не менее, полезны на практике, называются эвристикой. А те из них, что явно противоречат здравому смыслу, называются заблуждениями.
Если мы все же надеемся использовать человеческий разум в качестве инструмента измерения, то должны придумать, как усилить присущие ему преимущества и в то же время нейтрализовать погрешности. Последствия излишней самоуверенности экспертов устраняет калибровка вероятностей; другие характерные для людских суждений виды систематических ошибок и искажений устраняют специальные методы, особенно эффективные, когда необходимо высказать много мнений по аналогичным вопросам. Примерами могут служить оценка затрат на реализацию новых проектов по информационным технологиям, определение рыночного потенциала новых продуктов либо аттестация работников. Только человеческие суждения позволяют учесть все качественные факторы при проведении этих измерений, однако людям всегда нужна помощь.
Хомо абсурдус: странные мотивы наших решений
Упомянутые в главе 8 отклонения — лишь отдельные разновидности ошибок измерения. Отклонения связаны с погрешностями наблюдения, возникающими при проведении случайной выборки или управляемого эксперимента. Но когда измерение пытаются осуществить с привлечением экспертов-оценщиков, то возникает другая проблема — проблема когнитивного искажения. Мы уже видели пример такого искажения, когда говорили о присущей экспертам излишней самоуверенности, но есть и другие — некоторые из них перечислены ниже.
• Зацикленность. Это когнитивное искажение, уже обсуждавшееся в главе 5 по калибровке, но заслуживающее более детального рассмотрения. Оказывается, что если просто думать о какой-то цифре, пусть и не имеющей отношения к вопросу, то это может повлиять на ваш ответ. В одном эксперименте Амос Тверски и лауреат Нобелевской премии по экономике 2002 г. Дэниел Канеман спросили у испытуемых, какой процент стран — членов ООН составляют африканские государства. Одну группу респондентов спросили, превышает ли этот показатель 10 %, а вторую — 65 %. И тем и другим сообщили, что число, предложенное в вопросе, было выбрано наугад (хотя на самом деле это было не так). Затем каждую группу попросили дать свой ответ. Представители первой (10 %) в среднем дали ответ 25 %, а члены второй группы (65 %) — 45 %. Несмотря на уверенность респондентов в случайности предложенных им значений, эти числа все же повлияли на ответы. В своем более позднем эксперименте Канеман показал, что число, на котором зацикливаются участники, может не иметь к делу вообще никакого отношения. Он попросил каждого испытуемого написать на бумаге четыре последние цифры номера своего полиса социального страхования, а затем оценить количество врачей в Нью-Йорке. Как ни странно, Канеман обнаружил корреляцию в 0,4 между оценкой числа врачей и цифрами полиса социального страхования. Эта корреляция была умеренной, но намного превышала объясняемую чистой случайностью.