Согласно данному представлению о мозге, наши взрослые суждения объединяют два уровня: врожденные знания, присущие нам как виду (то, что сторонники байесовского подхода называют
На сегодняшний день мы можем математически доказать, что байесовский подход – это лучший способ учиться. Это единственный способ выделить саму суть учебного эпизода и извлечь из него максимум. Для научения достаточно всего нескольких битов информации вроде подозрительных совпадений, которые Тьюринг обнаружил в коде «Энигмы». Как только система их обработает, она получит достаточно данных, чтобы опровергнуть одни теории и подтвердить другие.
Значит, вот как работает мозг? Неужели он с рождения может генерировать массы гипотез, из которых затем выбирает те, которые наилучшим образом согласуются с наблюдаемыми данными? Получается, младенцы с самого рождения действуют как умные и терпеливые ученые-статистики? Способны ли они извлечь максимум информации из каждого учебного опыта? Давайте посмотрим, что удалось выяснить о мозге маленьких детей в ходе экспериментальных исследований.
Часть II
Как учится наш мозг
Споры об относительной роли наследственности и окружающей среды не утихали на протяжении тысячелетий. Подобны ли младенцы
Как мы уже убедились, две тысячи лет спустя прогресс в сфере машинного обучения заставил ученых прийти к аналогичному выводу. Обучение протекает значительно эффективнее, если машина обладает двумя свойствами: широким пространством гипотез (набором ментальных моделей с множеством возможных настроек) и сложными алгоритмами, которые корректируют эти настройки в соответствии с данными, полученными из внешнего мира. Как однажды сказал один из моих друзей, в дискуссии о роли наследственности и окружающей среды мы недооцениваем и первое, и второе! Чтобы учиться, необходимы две структуры: обширный набор потенциальных моделей и эффективный алгоритм для их адаптации к реальности.
Искусственные нейронные сети делают это по-своему, доверяя представление ментальных моделей миллионам регулируемых связей. Хотя такие системы способны на быстрое и бессознательное распознавание образов или речи, репрезентация более абстрактных гипотез, таких как правила грамматики или логика математических операций, им недоступна.
Человеческий мозг, по всей видимости, функционирует иначе: наши знания множатся за счет комбинирования символов. Согласно данной точке зрения, мы появляемся на свет с огромным количеством возможных комбинаций потенциальных мыслей. Этот язык мышления, включающий абстрактные допущения и грамматические правила, присутствует в нас изначально и порождает необъятное царство гипотез. Теория байесовского мозга гласит: чтобы эти гипотезы проверить, наш мозг должен действовать, как ученый: собирать статистические данные, а затем использовать их для выбора наиболее подходящей генеративной модели.
Такой взгляд на научение может показаться нелогичным. Он предполагает, что мозг каждого маленького ребенка потенциально содержит все языки мира, все объекты, все лица и все инструменты, с которыми он когда-либо сможет столкнуться, а также все слова, факты и события, которые он когда-либо сможет запомнить. Комбинаторика мозга такова, что все эти объекты мысли потенциально уже есть в нем – наряду с соответствующими априорными вероятностями, а также способностью обновлять их на основе текущего опыта. Неужели ребенок в самом деле учится именно так?
Глава 3
Невидимые знания младенцев