Такое улучшение границ осуществляется благодаря механизму, известному как латеральное торможение[10]
. Это фундаментальный процесс для сетчатки глаза, а также для компьютерного зрения. Вернемся еще раз к примеру с черно-белой полосой. Срединные области сплошного черного или белого цвета не содержат много информации. Наибольшее количество информации несет граница между черной и белой областями. Так вот, механизм латерального торможения увеличивает интенсивность реакции ганглионарных клеток, чьи рецептивные поля находятся рядом с этой границей. Благодаря его действию разница между сигналами, поступающими в мозг от «приграничных» областей черной и белой зон, становится гораздо более выраженной, чем могла бы быть в ином случае. Это наглядный пример того, как сетчатка выбирает наиболее важные характеристики визуального мира, о которых следует сообщить мозгу.В графических редакторах на наших компьютерах и смартфонах для корректировки цифровых изображений используются похожие функции, такие как «повысить контрастность» или «выделить контуры». Применение этих инструментов делает изображение более четким, хотя и, разумеется, не без издержек: за это приходится платить в той или иной мере потерей полутонов. Но иногда оно того стоит.
Механизм латерального торможения используется во всех сенсорных системах: не только в зрительной, но и в осязательной, слуховой, а также, как предполагают, в обонятельной и вкусовой. Он обнаружен у всех млекопитающих и многих видов беспозвоночных. В этом нет ничего удивительного. Широкое распространение того или иного полезного признака характерно для ранних стадий эволюции: латеральное торможение было одним из первых изобретенных природой эффективных приемов обработки сенсорной информации. Но почему увеличение контрастности контуров так полезно для живых организмов?
Чтобы ответить на этот вопрос, давайте рассмотрим, как механизм латерального торможения влияет на сигналы, посылаемые в мозг всей популяцией ганглионарных клеток сетчатки. На приведенном ниже рисунке показано, как фактическое изображение, падающее на поверхность сетчатки (и воспринимаемое палочками и колбочками фоторецепторов), преобразуется в модифицированный ответ, который передается в мозг ганглионарными клетками.
Вверху показано фактическое изображение: одна его половина – черная, а другая – белая. Внизу приведена амплитуда сигнала, посылаемого ганглионарными клетками в мозг. Обратите внимание: рядом с границей между черной и белой полосами сила сигнала меняется: на белой стороне она возрастает, а на черной, наоборот, снижается еще больше. Для мозга значит, что разница между светлой и темной областями – перепад в сигналах, определяющий наличие границы, – становится более выраженной.
Для простоты в вышеприведенном примере я говорил так, как если бы сетчатка содержала только on-клетки, тогда как в действительности примерно половину всех ганглионарных клеток составляют off-клетки. Их поведение противоположно поведению on-клеток, но общий эффект тот же – увеличение силы дифференциального сигнала рядом с границей. Я не буду утомлять вас пошаговым описанием процесса – у off-клеток все происходит так же, как у on-клеток, только наоборот.
Просто ради интереса задумайтесь вот над чем: если темная область стимула абсолютно черная, а белая область абсолютно белая, значит ли это, что механизм латерального торможения приводит к тому, что черная область рядом с границей выглядит чернее черной, а белая область – белее белой? Теоретически, если темная область стимула идеально черная, а белая – идеально белая, on– и off-клетки по определению функционируют на пределе своих возможностей – они не могут выйти за пределы нуля или 100 %. Но в реальном мире такого не бывает; все части изображения по степени освещенности или затемненности обычно находятся где-то посредине между абсолютными крайними точками. Когда наша зрительная система обнаруживает переход между более светлой и более темной областями, латеральное торможение усиливает дифференциальный сигнал и тем самым – наше восприятие контраста. Этот эффект лежит в основе зрительной иллюзии, известной как полосы Маха: когда две области, светлая и темная, соприкасаются друг с другом, на краю темной области рядом с границей мы видим узкую сверхтемную полосу, а на краю светлой области – такую же сверхсветлую полосу.