Читаем Как мы видим то, что видим полностью

Изобретатель руководствовался теорией цветового зрения, которую принято называть сейчас трехкомпонентной. Она ведет начало от речи «Слово о происхождении света, новую теорию о цветах представляющее, в публичном собрании Императорской Академии Наук июля 1 дня 1756 года говоренное Михаилом Ломоносовым». Великий ученый сообщал слушателям: «Я приметил и через многие годы многими прежде догадками, а после доказательными опытами с довольною вероятностью утвердился, что природа эфирных частиц имеет совмещение с тремя родами действующих первоначальных частиц, чувствительные тела составляющих... От первого рода эфира происходит цвет красный, от второго – желтый, от третьего – голубой. Прочие цветы рождаются от смешения первых... Натура тем паче всего удивительна, что в простоте своей многохитростна, и от малого числа причин произносит (так и автора – В.Д.) неисчислимые образы свойств, перемен и явлений»».

Эта смелая мысль не была тогда по достоинству оценена научным миром. Лишь спустя полвека к ней обратился английский физик Томас Юнг. Он отметил, что идеи Ломоносова дали ему, выражаясь нынешним лексиконом, материал для размышлений.

Юнг оттолкнулся от самоочевидного факта: сетчатка сообщает мозгу о форме и цвете предметов (представления о более высоких мозговых структурах и их роли тогда еще находились в самом зачатке), а любая часть изображения может быть окрашена в любой, вообще говоря, тон. Как же глаз ухитряется видеть все многообразие красок? Неужели на любом кусочке сетчатки находится бесчисленное множество элементов, призванных реагировать каждый на свой цвет? Вряд ли: уж очень сложно, и тут к месту было вспомнить Уильяма Оккама с его принципом «не плодить лишних сущностей, кроме необходимых».

Вполне логичным поэтому выглядело такое предположение: ощущающих цвет клеток немного, но благодаря их совместной работе возникает ощущение бесконечного богатства красок. Три эфира, упомянутые Ломоносовым, трансформировались у Юнга в три цветоощущающих элемента сетчатки.

Детально это его предположение развил Гельмгольц в своем «Справочнике по психологической оптике», изданном в 1859...1866 гг. в Гейдельберге, где он читал физиологию студентам университета. После чего трехкомпонентная теория Юнга-Гельмгольца вполне утвердилась в науке о зрении.

Сейчас точно установлено, что в сетчатке цветовые фотоприемники – колбочки – именно трех родов: у одних максимальна чувствительность к желтым лучам, у других к зеленым, у третьих к синим. Удалось даже подобраться с измерительным прибором непосредственно к колбочкам сетчатки обезьяны, которая различает цвета почти так же, как человек. Чувствительность колбочек к частоте световых колебаний оказалась очень близкой к той, которая следует из теории трехкомпонентного зрения. Графики ответов занимают обширные области: «размазанность» кривых, перекрывающих друг друга, обеспечивает цветовое восприятие.

Но природа не поставила никаких светофильтров перед фоторецепторами нашей сетчатки. Она сделала хитрее: создала несколько разновидностей светочувствительных пигментов. Каждый из них лучше всего ловит «свои» кванты – минимальные порции света и вообще электромагнитных колебаний.

Глаз человека – система невероятно высокочувствительная. Академик Сергей Иванович Вавилов писал в книге «Глаз и Солнце», что порог раздражения палочек, с помощью которых мы видим ночью, эквивалентен силе света обыкновенной свечи, рассматриваемой с расстояния двухсот километров. Тогда на кусочек сетчатки, где находится примерно 400 палочек, попадает всего лишь шесть – девять квантов.

То есть для срабатывания фоторецептора достаточно одного-единственного кванта, ибо совершенно невероятно, чтобы даже две частицы света попали точно в один и тот же рецептор.

Долгие годы этот результат, к тому же подтвержденный опытами, во время которых глаз действительно ощущал квантовый характер света (ни один прибор не способен похвастать подобной чувствительностью!), казался граничащим с чудом: как ухитрилась природа сконструировать такой механизм? Новейшие исследования дали ответ: влетевший в светочувствительную клетку фотон – это как бы палец, нажимающий на спусковой крючок ружья.

 

Рис. 52. Молекула ретиналя реагирует на влетевший в нее квант света поворотом ее «хвостика»

В фоторецепторах любого живого существа находится несколько видоизмененный витамин А – ретиналь, вы видите его на рисунке слева (для создания объемности я написал на основной части молекулы ARABIKA). У основной части молекулы есть небольшой хвостик длиной в три атома углерода (он изображен черным цветом и тем же словом). Пока фотон не попал в молекулу, она изогнута так, что хвостик перпендикулярен плоскости, в которой лежат углеродные атомы основной части (картинка А). Квант заставляет хвостик повернуться, молекула становится плоской (картинка В).

Перейти на страницу:

Все книги серии Наука и прогресс

Похожие книги

Логика случая. О природе и происхождении биологической эволюции
Логика случая. О природе и происхождении биологической эволюции

В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эволюции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход — вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.

Евгений Викторович Кунин

Биология, биофизика, биохимия / Биология / Образование и наука
Трилобиты. Свидетели эволюции
Трилобиты. Свидетели эволюции

Перед нами первая популярная книга на русском языке о трилобитах. Миллионы лет назад эти необычайные животные самых немыслимых форм и размеров, хищные и смирные, крошки и гиганты, царили в океанах и на суше… а потом исчезли. О загадках их ушедшей жизни интеллигентно и остроумно рассказывает Ричард Форти, большой знаток трилобитов, влюбленный в них с самого детства. Читатель не только получит основательные сведения о трилобитах и их современниках. Он почувствует поступь эволюции, которая произвела на свет этих существ, позволила им сначала триумфально шествовать по океанам и эпохам, а потом—таинственно исчезнуть. Вы узнаете, как с помощью трилобитов подвинуть Африку и как считать время по трилобитовому циферблату. Не менее увлекательно и драматично Форти показывает судьбы ученых и причудливый мир науки с его головоломками и озарениями.

Ричард Форти

Биология, биофизика, биохимия / Биология / Образование и наука