Читаем Как мы видим то, что видим полностью

Но вернемся к теории Юнга-Гельмгольца. Она неплохо объясняет, как из цветов спектра образуются различные краски. Она подсказывает, каким способом можно «обмануть» глаз и показать ему один и тот же цвет, смешивая пары совершенно различных лучей. Для этого нужно только соответствующим образом возбудить различные колбочки. Существует множество комбинаций лучей, воспринимаемых глазом как белый свет: его дадут такие пары, как, например, имеющие длины волн 486 и 590 нанометров (голубой и оранжевый), 467 и 572 нанометра (синий и желто-зеленый), 494 и 640 нанометров (красный и зеленый), и так далее, и так далее... Вместе с тем красный и зеленый лучи могут дать великолепный желтый тон, который, кроме того, легко составить из оранжевого и зеленовато-синего света... Рецептов создания любого цвета, лежащего в средней части спектра, оказывается тысячи. Обо всем этом убедительно говорят учебники. Умалчивают они лишь о том, чего теория не объясняет.

А трехкомпоненная теория плохо объясняет некоторые расстройства зрения. Например, почему некоторые дальтоники видят только синие лучи, а всё остальное – в черно-белом варианте. Ведь белое по этой теории есть результат сочетания трех сигналов от трех типов колбочек, и если это так, должны быть ощущения других цветов. Словом, когда нейрофизиологи смогли подключить к ганглиозным клеткам сетчатки свои приборы и стали освещать ее не белым светом, а разноцветными лучами, оказалось, что сигналы от колбочек есть, только они сочетаются между собой совсем не так, как мыслилось по теории Юнга-Гельмгольца. Что поделать, наука на месте не стоит, и у любой теории есть вершина и спад...

Основываясь на феномене «сине-белых» дальтонических расстройств, известный немецкий физиолог Эвальд Геринг выдвинул в 1874 г. гипотезу, весьма расходившуюся с господствовавшей тогда трехкомпонентной: вместо сложения сигналов основой было вычитание. Геринг утверждал, что в чувствительных элементах глаза находятся три вещества, из которых одно распадается под действием красных лучей и восстанавливается от зеленых, другое претерпевает такие же изменения благодаря синим и желтым лучам, а третье чувствительно к черным и белым. Это казалось нелепостью: вы когда-нибудь видели черный свет? Да к тому же никаких веществ такого рода найти не удалось, а авторитет Гельмгольца, и вполне заслуженно, был высок.

Словом, о гипотезе Геринга вспоминали в учебниках не более как об историческом факте, чуть ли не курьезе. Но судьба почему-то любит неудачников с острым умом. Девяносто лет спустя после публикации работы Геринга вышла из печати статья Роберта Де Валуа и Джорджа Джекобса: ганглиозные клетки сетчатки глаза лягушки работают «по Герингу»!

Помните, мы говорили об обратных связях в сетчатке? Мы увидели там систему, благодаря которой в мозг поступают из ганглиозных клеток сигналы, свидетельствующие не о яркости света на данном участке, а только об отклонениях этой яркости от некоего среднего значения, средней освещенности. Вверх – белый свет, а вниз... иначе как черным его не назовешь!

Такое же положение и с цветовыми сигналами. Цветовые лучи воспринимаются лягушачьей сетчаткой с помощью полей ганглиозных клеток. Но поля эти по своим ответам гораздо сложнее, чем черно-белые. До тех пор, пока никакого света на него не подано, ганглиозная клетка отправляет в мозг сигналы спонтанной активности – редкие, как бы случайные импульсы. Благодаря им даже в полной темноте мы видим не черноту перед глазами, а как бы колеблющуюся серую пелену.

 

Рис. 56. Цветовые поля наружного коленчатого тела (НКТ между сетчаткой и зрительной корой), «взвешивающие» пары цветов: какого цвета больше? Всего возможно восемь комбинаций: четыре комбинации с ON-центром сложного поля и четыре комбинации с OFF-центром сложного поля. Этим обеспечиваются ответы о перепады яркостей  «свет – темнота» и «темнота – свет». Всё это происходит задолго до работы зрительных полей коры

Но вот исследователь начинает проверять поле с зеленым «он»-центром и красной «офф»-периферией (левый верхний рисунок). Дает зеленый свет на центр – спонтанная активность сменяется дробью импульсов: «Есть свет!». Выключает свет – сигналов нет, затормаживается на некоторое время даже спонтанная активность.

С периферией, как и положено, зависимость обратная. Красное световое кольцо угашает спонтанную активность, а выключение света заставляет ганглиозную клетку дать сигнал.

У других трех типов «красно-зеленых» ганглиозных клеток поля имеют либо зеленый «офф»-центр и красную «он»-периферию, либо красный «офф»-центр и зеленую «он»-периферию, либо, наконец, красный «он»-центр и зеленую «офф»-периферию... Уфф! И еще четыре такие же пары существуют для желтых и синих лучей. (У приматов такой работой заняты нейроны коры.)

Перейти на страницу:

Все книги серии Наука и прогресс

Похожие книги

Логика случая. О природе и происхождении биологической эволюции
Логика случая. О природе и происхождении биологической эволюции

В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эволюции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход — вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.

Евгений Викторович Кунин

Биология, биофизика, биохимия / Биология / Образование и наука
Трилобиты. Свидетели эволюции
Трилобиты. Свидетели эволюции

Перед нами первая популярная книга на русском языке о трилобитах. Миллионы лет назад эти необычайные животные самых немыслимых форм и размеров, хищные и смирные, крошки и гиганты, царили в океанах и на суше… а потом исчезли. О загадках их ушедшей жизни интеллигентно и остроумно рассказывает Ричард Форти, большой знаток трилобитов, влюбленный в них с самого детства. Читатель не только получит основательные сведения о трилобитах и их современниках. Он почувствует поступь эволюции, которая произвела на свет этих существ, позволила им сначала триумфально шествовать по океанам и эпохам, а потом—таинственно исчезнуть. Вы узнаете, как с помощью трилобитов подвинуть Африку и как считать время по трилобитовому циферблату. Не менее увлекательно и драматично Форти показывает судьбы ученых и причудливый мир науки с его головоломками и озарениями.

Ричард Форти

Биология, биофизика, биохимия / Биология / Образование и наука