Читаем Как оценить риски в кибербезопасности. Лучшие инструменты и практики полностью

В главе 4 уже упоминалось, что эксперты могут находиться под влиянием множества не относящихся к делу факторов, сохраняя при этом иллюзию обучения и компетентности. Линейная модель оценки эксперта, однако, дает совершенно последовательные результаты. Как и в методе ЛОШ, в модели линзы это достигается путем удаления из оценки ошибок, связанных с несогласованностью экспертов. В отличие от ЛОШ, здесь не требуется четко выяснять у экспертов правила оценки для каждой переменной. Вместо этого мы просто наблюдаем за суждениями экспертов, учитывая все переменные, и пытаемся вывести правила на основе статистики.

Предлагаемый процесс построения модели, состоящий из семи шагов, достаточно прост. Мы несколько изменили изначальную процедуру, чтобы учесть и другие методы, появившиеся с момента разработки Брунсвиком своего подхода (например, калибровку вероятностей). Напомним, что здесь предоставляется ровно столько информации, чтобы читатель, уже знакомый с различными методами регрессии, смог понять, как работает метод линзы.

1. Отберите экспертов и откалибруйте их.

2. Попросите экспертов определить список факторов, относящихся к конкретному объекту, который они будут оценивать (вроде тех, что указаны в приведенной нами ранее таблице узлов). Но список должен содержать не более 10 пунктов.

3. Создайте набор сценариев, используя комбинации значений для каждого из указанных факторов. Сценарии могут основываться на реальных примерах или быть чисто гипотетическими, для каждого опрашиваемого эксперта их потребуется от 30 до 50 штук. Каждый сценарий будет выборкой в вашей регрессионной модели.

4. Попросите экспертов дать соответствующую оценку каждому описанному сценарию.

5. Усредните оценки экспертов.

6. Проведите логистический регрессионный анализ, используя среднее значение экспертных оценок в качестве зависимой переменной, а вводные данные, предоставленные экспертам, – в качестве независимой переменной. В зависимости от используемых вводных переменных вам может потребоваться закодировать вводные данные или применить полиномиальные методы регрессии. Поскольку в данном случае вы оцениваете вероятность, можно применить методы логистической регрессии. Здесь сплошная специальная лексика, но если вы знакомы с методами регрессии, то поймете, о чем идет речь.

7. Наилучшим образом подходящая для логистической регрессии формула и станет моделью линзы.

По завершении описанной процедуры вы сможете построить график как на рис. 9.5. Он показывает оценку усредненного суждения экспертов в модели регрессии в сравнении со средним значением экспертных суждений для каждого из сценариев. Видно, что модель, конечно же, не полностью совпадает с суждениями экспертов, но близка к ним. На самом деле, если сравнивать эти данные с показателями несогласованности экспертов, то, как правило, выясняется, что большая часть отклонений модели от экспертных оценок связана с несогласованностью экспертов. Таким образом, модель линзы могла бы быть еще более эффективной, если бы эксперты были более согласованны в своих оценках. Эта несогласованность устраняется с помощью метода линзы.

Если вы решите применять метод линзы, то построенная выше модель действительно будет лучше единичного эксперта по нескольким параметрам. Она, по сути, является имитацией усредненных суждений ваших лучших калиброванных экспертов, если бы они были идеально согласованны.

Для оценки несогласованности можно применить метод «дублирующейся пары» из главы 4: в нескольких случаях, вместо того чтобы спрашивать экспертов о влиянии отдельных условий, можно дать в списке идентичные друг другу сценарии, скажем 7-й и 29-й. После просмотра пары десятков сценариев эксперты забывают, что они уже рассматривали такую же ситуацию, и часто дают немного отличающийся ответ. Вдумчивые же эксперты более согласованны в оценке сценариев. В любом случае, как было показано в главе 4, доля несогласованности составляет около 21 % от общего разброса в экспертных оценках (остальные 79 % обусловлены данными, предоставленными экспертам для вынесения суждения). И эта ошибка полностью устраняется с помощью метода линзы.

Рис. 9.5. Пример регрессионной модели, предсказывающей оценки экспертов

Сравнение методов линзы и ЛОШ

У каждого из рассмотренных двух методов есть свои плюсы и минусы.

1. ЛОШ занимает (ненамного) меньше времени. В методе линзы экспертам необходимо рассмотреть множество выборок, чтобы можно было построить модель регрессии.

2. Метод линзы способен выявлять более сложные взаимодействия между переменными. Ответы экспертов могут указывать на то, что некоторые переменные важны только при определенном значении других переменных.

Перейти на страницу:

Похожие книги

Один хороший трейд. Скрытая информация о высококонкурентном мире частного трейдинга
Один хороший трейд. Скрытая информация о высококонкурентном мире частного трейдинга

Частный трейдинг или proprietory trading пока еще мало освещен в русскоязычной литературе. По сути дела, это первая книга на эту тему. Считается, что такой трейдинг появился много лет назад, когда брокерские компании, банки и другие финансовые институты нанимали трейдеров для торговли на финансовых рынках деньгами компании. Сейчас это понятие распространяется и на трейдеров, которые не получают заработную плату, но вкладывают некую сумму своих личных денег в трейды компании-собственника.Книга рассказывает обо всех важных уроках, преподанных автору рынком на протяжении последних 12 лет, в течение которых он тем или иным образом был связан с частным трейдингом. Он поделится с читателем наработанным опытом и для этого познакомит вас со многими трейдерами. Некоторым из них довелось познать вкус успеха, большинству же пришлось очень туго.Книга нацелена на широкую аудиторию трейдеров и спекулянтов, работающих на финансовых рынках России и мира, а также частных инвесторов, самостоятельно продумывающиХ свои стратегии в биржевых и внебиржевых трейдах.

Майк Беллафиоре

Финансы / Хобби и ремесла / Дом и досуг / Финансы и бизнес / Ценные бумаги
Инвестиции в инфраструктуру: Деньги, проекты, интересы. ГЧП, концессии, проектное финансирование
Инвестиции в инфраструктуру: Деньги, проекты, интересы. ГЧП, концессии, проектное финансирование

Без инвестиций в инфраструктуру невозможно представить себе функционирование общества, экономики, бизнеса, государства и его граждан. В книге описываются основные модели внебюджетного инвестирования в транспортные, социальные, медицинские, IT– и иные проекты. Такие проекты – удел больших денег, многоходовых инвестиционных моделей и значительных интересов, а в основе почти всех подобных проектов прямые инвестиции со стороны бюджетов разных уровней либо различные формы государственно-частного партнерства (ГЧП). Материал в книге изложен понятным языком, с многочисленными примерами, помогающими усвоению важнейшей информации, даны предметные советы по старту и реализации конкретных проектов. Именно они могут принести бизнесу существенный доход, а властям – авторитет и уважение граждан.

Альберт Еганян

Финансы / Финансы и бизнес / Ценные бумаги
Покер лжецов
Покер лжецов

«Покер лжецов» — документальный вариант истории об инвестиционных банках, раскрывающий подоплеку повести Тома Вулфа «Bonfire of the Vanities» («Костер тщеславия»). Льюис описывает головокружительный путь своего героя по торговым площадкам фирмы Salomon Brothers в Лондоне и Нью-Йорке в середине бурных 1980-х годов, когда фирма являлась самым мощным и прибыльным инвестиционным банком мира. История этого пути — от простого стажера к подмастерью-геку и к победному званию «большой хобот» — оказалась забавной и пугающей. Это откровенный, безжалостный и захватывающий дух рассказ об истерической алчности и честолюбии в замкнутом, маниакально одержимом мире рынка облигаций. Эксцессы Уолл-стрит, бывшие центральной темой 80-х годов XX века, нашли точное отражение в «Покере лжецов».

Майкл Льюис

Финансы / Экономика / Биографии и Мемуары / Документальная литература / Публицистика / О бизнесе популярно / Финансы и бизнес / Ценные бумаги