Читаем Как оценить риски в кибербезопасности. Лучшие инструменты и практики полностью

Чтобы узнать больше о языке программирования R, мы рекомендуем воспользоваться многочисленными книгами и бесчисленными учебными пособиями в интернете. Мы будем работать с библиотекой R под названием LearnBayes, которая сама по себе является учебным пособием. У автора этого модуля, Джима Альберта, есть замечательная книга3 и несколько учебных пособий, доступных онлайн, к которым можно обращаться в случае возникновения вопросов, как это делаем мы. Если у вас нет R, можно загрузить его для нужной платформы по ссылке: https://cran.rstudio.com/index.html. Мы также рекомендуем среду разработки RStudio, которая значительно облегчит написание кода на R: https://www.rstudio.com/products/rstudio/download/.

Скачав RStudio, вам нужно будет ее запустить, введите для этого в командной строке:

install.packages(«LearnBayes»).

Вот факты для нашего сценария.

• Теперь вы – часть команды, которой поручено провести аудит с целью оценки приобретения стоимостью несколько миллиардов долларов.

• Компания, о которой идет речь, имеет значительное глобальное облачное присутствие.

• Вам сообщили, что у компании есть несколько сотен облачных приложений, обслуживающих различные критически важные отрасли с миллионами пользователей.

• Вам дали меньше недели, чтобы, как говорит ваш генеральный директор, «определить, насколько все плохо, есть ли какие-либо подводные камни и, кроме того, насколько вырастет наш технический долг с точки зрения безопасности».

• Ваша организация – одна из нескольких, заинтересованных в сделке с данной компанией. Это что-то вроде срочной распродажи в том смысле, что правление компании-продавца хочет быстрее со всем покончить.

• Вы не сможете получить всю желаемую информацию. Фактически вам даже толком не дадут провести формальную оценку.

Поскольку вы хотите, чтобы ваша работа была состоятельна с точки зрения технической оценки, вы решили сосредоточиться на некоторых аспектах безопасности из Матрицы мер безопасности для облаков от Cloud Security Alliances. Она соотносится со всеми крупными системами контроля вроде ISO, NIST и прочих. Вы сокращаете список до пяти обязательных макроэлементов. Отсутствие любого из этих средств контроля может привести к затратам в несколько сотен тысяч долларов на исправление одного приложения или даже больше.

После проведения небольшого исследования вы на 50 % уверены, что на самом деле истинная доля средств контроля безопасности менее 40 %. Непонятно? Все потому, что мы пытаемся объяснить «картину в пропорции». Лучше всего представлять эту информацию в виде графика. У вас есть колоколообразная кривая, наивысшая точка которой немного смещена влево от центра – отметки 40 % на оси x. Вы также на 90 % уверены в том, что истинное значение (процент действующих средств контроля безопасности) находится на графике ниже отметки 60 %, что сдвигает кривую на графике еще немного левее. Если бы вы были на 90 % уверены, что количество действующих средств контроля безопасности менее 50 %, исходная кривая была бы выше и ýже, т. е. плотнее вокруг отметки 40 %.

Предположим, вы проводите первый аудит/опрос по поводу 10 приложений и обнаруживаете, что в 3 из 10 приложений установлены базовые средства контроля безопасности. И теперь вы вводите свои «априорные суждения» о компании, добавив к ним недавно полученные данные, в R:

> library(LearnBayes)

>

> beta.par <– beta.select(list(p=0.5, x=0.40), list(p=0.90, x=.60))

> triplot(beta.par, c(3,7))

Как указано выше, согласно априорным суждениям, вы считаете, что количество действующих средств контроля безопасности для большинства облачных приложений, о которых идет речь, составляет около 40 %. По мере получения дополнительных данных ваши соображения начинают «обретать форму». Это отражено в апостериорных данных, под которыми понимаются данные, полученные после проведения анализа. Если использовать апостериорные данные для нового анализа, то в нем они станут априорными. Данные, с которых вы начинаете прогноз, являются априорными для получения выходных данных, которые будут апостериорными. Разброс ваших суждений уменьшается, диапазоны сужаются и, следовательно, становятся более определенными. Конечно, это только после 10 опросов.

Обратите внимание на график «Вероятность». Эта функция описывает степень вероятности того, что вы сможете увидеть желаемые данные с учетом вашей модели (гипотезы). Формально это было бы записано так: P(Данные | Гипотеза). В нашем случае было три успеха и семь неудач. Если модель последовательна, то вероятность, что она отражает наши данные, должна быть относительно высокой.

Рис. 10.2. Трилинейная диаграмма Байеса, бета (4,31, 6,3) априорные данные, у (успех, попадания) = 3, н (неудачи, промахи) = 7

Перейти на страницу:

Похожие книги

Один хороший трейд. Скрытая информация о высококонкурентном мире частного трейдинга
Один хороший трейд. Скрытая информация о высококонкурентном мире частного трейдинга

Частный трейдинг или proprietory trading пока еще мало освещен в русскоязычной литературе. По сути дела, это первая книга на эту тему. Считается, что такой трейдинг появился много лет назад, когда брокерские компании, банки и другие финансовые институты нанимали трейдеров для торговли на финансовых рынках деньгами компании. Сейчас это понятие распространяется и на трейдеров, которые не получают заработную плату, но вкладывают некую сумму своих личных денег в трейды компании-собственника.Книга рассказывает обо всех важных уроках, преподанных автору рынком на протяжении последних 12 лет, в течение которых он тем или иным образом был связан с частным трейдингом. Он поделится с читателем наработанным опытом и для этого познакомит вас со многими трейдерами. Некоторым из них довелось познать вкус успеха, большинству же пришлось очень туго.Книга нацелена на широкую аудиторию трейдеров и спекулянтов, работающих на финансовых рынках России и мира, а также частных инвесторов, самостоятельно продумывающиХ свои стратегии в биржевых и внебиржевых трейдах.

Майк Беллафиоре

Финансы / Хобби и ремесла / Дом и досуг / Финансы и бизнес / Ценные бумаги
Инвестиции в инфраструктуру: Деньги, проекты, интересы. ГЧП, концессии, проектное финансирование
Инвестиции в инфраструктуру: Деньги, проекты, интересы. ГЧП, концессии, проектное финансирование

Без инвестиций в инфраструктуру невозможно представить себе функционирование общества, экономики, бизнеса, государства и его граждан. В книге описываются основные модели внебюджетного инвестирования в транспортные, социальные, медицинские, IT– и иные проекты. Такие проекты – удел больших денег, многоходовых инвестиционных моделей и значительных интересов, а в основе почти всех подобных проектов прямые инвестиции со стороны бюджетов разных уровней либо различные формы государственно-частного партнерства (ГЧП). Материал в книге изложен понятным языком, с многочисленными примерами, помогающими усвоению важнейшей информации, даны предметные советы по старту и реализации конкретных проектов. Именно они могут принести бизнесу существенный доход, а властям – авторитет и уважение граждан.

Альберт Еганян

Финансы / Финансы и бизнес / Ценные бумаги
Покер лжецов
Покер лжецов

«Покер лжецов» — документальный вариант истории об инвестиционных банках, раскрывающий подоплеку повести Тома Вулфа «Bonfire of the Vanities» («Костер тщеславия»). Льюис описывает головокружительный путь своего героя по торговым площадкам фирмы Salomon Brothers в Лондоне и Нью-Йорке в середине бурных 1980-х годов, когда фирма являлась самым мощным и прибыльным инвестиционным банком мира. История этого пути — от простого стажера к подмастерью-геку и к победному званию «большой хобот» — оказалась забавной и пугающей. Это откровенный, безжалостный и захватывающий дух рассказ об истерической алчности и честолюбии в замкнутом, маниакально одержимом мире рынка облигаций. Эксцессы Уолл-стрит, бывшие центральной темой 80-х годов XX века, нашли точное отражение в «Покере лжецов».

Майкл Льюис

Финансы / Экономика / Биографии и Мемуары / Документальная литература / Публицистика / О бизнесе популярно / Финансы и бизнес / Ценные бумаги