9. Huseyin Cavusoglu, Birendra Mishra, and Srinivasan Raghunathan, “The Effect of Internet Security Breach Announcements on Market Value: Capital Market Reactions for Breached Firms and Internet Security Developers,”
10. Trefis Team, “Home Depot: Will the Impact of the Data Breach Be Significant?” March 27, 2015, www.trefis.com/stock/hd/articles/286689/home-depot-will-the-impact-of-the-data-breach-be-significant/2015-03-27.
11. Wallis Consulting Group,
12. Trefis Team, “Data Breach Repercussions and Falling Traffic to Subdue Target’s Results,” August 18, 2014, www.trefis.com/stock/tgt/articles/251553/aug-20data-breach-repercussions-and-falling-traffic-tosupdue-targets-results/2014-08-18.
13. Trefis Team, “Home Depot: Will the Impact of the Data Breach Be Significant?” March 27, 2015, www.trefis.com/stock/hd/articles/286689/home-depot-will-the-impact-of-the-data-breach-be-significant/2015-03-27.
14. Ryan Singel, “Data Breach Will Cost TJX 1.7B, Security Firm Estimates,”
Глава 7. Калиброванные оценки: что вам известно уже сейчас?
Описанный ранее метод требует субъективной оценки количественных вероятностей. Например, эксперту в области кибербезопасности надо оценить вероятность наступления события или размер убытков в случае его наступления. И здесь приходится столкнуться с определенным сопротивлением. Некоторые эксперты по кибербезопасности, которых, похоже, не смущает оценка вероятности как «средняя» или «2», часто недоумевают, как можно субъективно оценивать количественную вероятность события.
Безусловно, вопрос о достоверности субъективных вероятностей вполне правомерен. К счастью, как упоминалось в главе 5, уже проведено немало исследований на данную тему, и очевидны два вывода: 1) большинство людей плохо умеют распределять вероятности, но 2) их можно научить делать это очень хорошо.
Поэтому, да, достоверность субъективных оценок вероятности объективно измерима, и ее уже
Данная глава во многом дублирует главу о калибровке из первой книги «Как измерить все, что угодно. Оценка стоимости нематериального в бизнесе». Если читатель уже знаком с обсуждением калиброванных оценок вероятности из той книги, эту главу можно пропустить или бегло просмотреть.
Введение в субъективную вероятность
В самом простом методе, описанном ранее, имеются два типа распределения вероятностей. Один применяется к дискретным событиям типа «или-или», например произойдет ли крупная утечка данных платежных карт клиентов компании розничной торговли. Другой применяется к диапазонам значений, скажем, какова будет величина убытков в секторе продаж в случае крупной утечки данных платежных карт клиентов. Суть двух типов распределения вероятностей кратко представлена в табл. 7.1.
В главе 3 оба метода применялись для выражения неопределенности относительно наступления события, касающегося кибербезопасности. К типу дискретного события относилось определение самого факта наступления события. Нами присваивалась вероятность (1 %, 15 % и т. д.), что событие произойдет в течение определенного периода времени. А его финансовое воздействие выражалось уже в виде диапазона.
Конечно, из этих двух форм распределений можно создать множество комбинаций. Могут быть дискретные события с более чем двумя исходами или сочетания дискретных и непрерывных распределений. Из нескольких бинарных распределений можно даже построить непрерывное распределение. На практике, однако, такое разграничение полезно.