Причем в том случае, когда тест на точность прогноза свидетельствует о структурной нестабильности, возникшей в модели в результате резкого изменения курса доллара в последнем наблюдении, то для устранения смещения в коэффициентах регрессии (и (или) величины константы) в уравнение можно ввести фиктивную переменную. Приравняем к единице фиктивную переменную для последнего наблюдения, а все остальные наблюдения приравняем к нулю, и тем самым прогностической моделью будет аппроксимирован последний рост без изменения коэффициентов регрессии и константы (свободного члена) уравнения. Еще более надежным способом получения точного прогноза в ситуации, когда тест Чоу на точность прогноза показал структурную нестабильность, является отказ от уравнения авторегрессии с нестационарной ARMА-структурой и переход к уравнению авторегрессии со стационарной ARMA-структурой, поскольку внешние шоки в гораздо меньшей степени влияют на коэффициенты регрессии и константу последнего уравнения. О том, как построить прогностическую модель со стационарной ARMA-структурой, мы будем говорить в главе 6.
5.6. Структурные изменения в курсе доллара, произошедшие в августе-октябре 1998 г
Пока остановимся на тестировании характера структурных изменений во временном нестационарном ряде, поскольку по форме они могут быть различными. Вполне очевидно, что в том случае, когда тестирование показывает нестабильность временнoго ряда, тогда перед нами стоит задача выявить характер произошедших структурных изменений. В общем виде этот анализ проводится следующим образом. Например, предположим, что в момент времени t = 5 в динамике временнoго ряда произошли кардинальные изменения. Чтобы понять характер этих изменений, нужно сравнить параметры следующего уравнения регрессии:
Y= a1 + b1 x Y(-1) в момент времени t = 5;
Y= а2 + b2 x Y(-1) в момент времени t 5,
где Y(-1) — независимая переменная с лагом в один месяц;
а — свободный член уравнения регрессии;
b — коэффициент регрессии уравнения регрессии.
Если, например, после момента времени t = 5 в уравнении регрессии (5.8) статистически значимо изменился свободный член уравнения, т. е. если мы пришли к выводу, что а1 /= а2, это свидетельствует о произошедшем структурном изменении в виде сдвига. Геометрически это означает, что графики стабильного тренда и тренда со сдвигом продолжают оставаться параллельными друг другу (рис. 5.10), в то время как изменение в начальном уровне тренда со сдвигом произошло единовременно в момент времени t = 5 при неизменном среднем темпе прироста в обоих трендах за весь период времени t.
Если, например, после момента времени t = 5 в уравнении (5.8) статистически значимо изменился коэффициент регрессии, т. е. если мы пришли к выводу, что b1 /= b2, это свидетельствует о произошедшем структурном изменении в виде изменения наклона. Геометрически это означает, что графики стабильного тренда и тренда с изменением наклона становятся непараллельными друг другу, пересекаясь в момент времени t = 5 (рис. 5.11). При этом изменения в динамике обоих трендов обусловлены возникшей у них существенной разницей в среднем темпе прироста.
Если после момента времени t = 5 в уравнении регрессии (5.8) статистически значимо изменились как свободный член уравнения (а1 /= а2), так и коэффициент регрессии (b1 /= b2), это свидетельствует о произошедшем структурном изменении в виде одновременного сдвига и изменения наклона. В этой ситуации можно говорить о том, что изменение в начальном уровне «тренда со сдвигом и изменением наклона» произошло единовременно в момент времени t = 5, что совпало и с возникшей в этот момент существенной разницей в среднем темпе прироста между обоими трендами. Поэтому вполне понятно, что с геометрической точки зрения график тренда со сдвигом и изменением наклона представляет собой сочетание тренда с изменением наклона и тренда со сдвигом. А потому график тренда со сдвигом и изменением наклона не параллелен стабильному тренду и резко отклоняется от последнего в момент времени, равный 5 (рис. 5.12).
После краткой общей характеристики различных видов структурных изменений нужно применить эти знания к исследованию нашей статистической модели USDOLLAR = а x USDOLLAR(-l) + b x USDOLLAR(-2). Поэтому предположим, что в августе 1998 г. в динамике курса доллара произошли структурные изменения, характер которых нам следует определить. Чтобы справиться с поставленной задачей, необходимо воспользоваться методом, предложенным американским экономистом Д. Гуйарати[16].
Алгоритм действий № 20Методика проведения теста Д. Гуйарати по определению характера структурного сдвига(на примере прогностической модели USDOLLAR = а x USDOLLAR(-l) + b x USDOLLAR(-2))Шаг 1. Основная идея, на которой построен тест Д. Гуйарати