Читаем Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews полностью

Если сравнить данные табл. 6.24 с данными табл. 6.18, то легко сделать вывод, что интервальные прогнозы, составленные по модели log(USDollar) = с + а x log(USDollar(-l)) + МА(1) с оптимизированным временным рядом, получились надежнее интервальных прогнозов, рассчитанных на основе аналогичной модели с полным временным рядом.

У стационарной модели, построенной на основе базы данных за период с октября 1998 г. по июнь 2010 г., есть еще один весьма ощутимый плюс — у нее более приемлемый диапазон интервальных прогнозов. Так, при прогнозе на октябрь 1998 г. общий диапазон интервального прогноза (верхняя граница интервального прогноза минус нижняя граница интервального прогноза) при 95 %-ном уровне надежности составил 1,84 руб. (табл. 6.25), или 11,48 % от фактического курса доллара, который тогда равнялся 16,01 руб. В то время как при прогнозе на июль 2010 г. общий диапазон интервального прогноза был равен 2,96 руб., или 9,79 % от фактического курса доллара, который тогда равнялся 30,19 руб. Нетрудно также заметить, что за счет уменьшения стандартного отклонения (в структурно стабильном временном ряде, естественно, наблюдается более низкий уровень волатильности) ширина диапазона интервального прогноза в табл. 6.25 существенно меньше, чем в табл. 6.19.

В заключение остановимся на таком важном моменте прогнозирования, как сравнение индекса оптимальности четырех статистических моделей. Дело в том, что наряду с точностью интервальных прогнозов необходимо оценить и их оптимальность, т. е. позаботиться о том, чтобы средняя ширина интервального прогноза (верхняя граница интервального прогноза минус нижняя граница интервального прогноза) не была слишком велика, поскольку это снижает ценность прогноза для инвестора. С этой целью сравним четыре важных параметра по четырем ранее разработанным статистическим моделям (табл. 6.26). Причем наиболее важным среди четырех параметров таблицы является индекс оптимальности интервальных прогнозов, который находится по следующей формуле:

Индекс оптимальности интервальных прогнозов = Средний диапазон интервального прогноза (руб): Точность интервальных прогнозов (при 95 %-ном уровне надежности).

(6.10)

Следовательно, чем ниже индекс оптимальности интервальных прогнозов, тем лучше конкретная статистическая модель. Таким образом, первое место по этому показателю занимает стационарная модель с оптимизированным временным рядом, в то время как последнее — стационарная модель с полным временным рядом. При этом индекс оптимальности интервальных прогнозов у первой модели равен

0,0276, а это означает, что на один процентный пункт точности интервальных прогнозов (при 95 %-ном уровне надежности) у нее приходится 2,76 коп. среднего диапазона интервального прогноза, в то время как один процентный пункт точности интервальных прогнозов у стационарной модели с полным временным рядом обошелся в 5,54 коп. среднего диапазона интервального прогноза, т. е. в последнем случае точность обошлась гораздо дороже.

Заметим также, что представленный в таблице средний диапазон интервального прогноза (руб.) вычислен путем суммирования всех диапазонов интервального прогноза по определенной статистической модели, которые затем делятся на общее количество наблюдений во временном ряде. В свою очередь средний диапазон интервального прогноза (%) находится по следующей формуле:

Средний диапазон интервального прогноза (руб.): Средний фактический курс доллара x 100 %.

(6.11)

Судя по табл. 6.26, по всем четырем параметрам наиболее оптимальные показатели у стационарной модели с оптимизированным временым рядом, в то время как наименее оптимальные — у стационарной модели с полным временным рядом. Сравнивая две нестационарные модели, можно прийти к выводу, что модель с оптимизированным временным рядом превосходит модель с полным временным рядом по трем параметрам, незначительно уступая ей лишь по точности интервальных прогнозов (при 95 %-ном уровне надежности).

Контрольные вопросы и задания

1. Почему при составлении статистической модели со стационарной ARM А-структурой мы были вынуждены перейти от исходного временнoго ряда к логарифмическому временному ряду? В каком случае расширенный тест Дикки — Фуллера отвергает нулевую гипотезу о наличии единичного корня? Какой вывод можно сделать в этом случае о стационарности временнбго ряда?

2. Повторите весь перечень действий, необходимых для построения статистической модели, представляющей собой уравнения авторегрессии (AR) или уравнения авторегрессии со скользящей средней (ARMA). Сколько всего пунктов в этом перечне и можно ли его при необходимости расширить?

3. Каким образом коррелограмма используется для построения моделей авторегрессии и моделей авторегрессии со скользящей средней? Как найти с помощью автокорреляционной и частной автокорреляционной функций величину лага для лаговой переменной AR и для скользящей средней МА?

Перейти на страницу:

Похожие книги

От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...
От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...

Как превратить среднюю (читай – хорошую) компанию в великую?На этот вопрос отвечает бестселлер «От хорошего к великому». В нем Джим Коллинз пишет о результатах своего шестилетнего исследования, в котором компании, совершившие прорыв, сравнивались с теми, кому это не удалось. У всех великих компаний обнаружились схожие элементы успеха, а именно: дисциплинированные люди, дисциплинированное мышление, дисциплинированные действия и эффект маховика.Благодаря этому компании добивались феноменальных результатов, превосходящих средние результаты по отрасли в несколько раз.Книга будет интересна собственникам бизнеса, директорам компаний, директорам по развитию, консультантам и студентам, обучающимся по специальности «менеджмент».

Джим Коллинз

Деловая литература / Личные финансы / Финансы и бизнес
Богатый пенсионер
Богатый пенсионер

Есть ли жизнь после пенсии? Безусловно, но ее качество зависит только от вас. Каждому, независимо от возраста, важно понимать суть пенсионной реформы. С этой книгой вы сможете:• изучить основы пенсионной реформы и определить, как увеличить страховую и накопительную части вашей пенсии;• создать себе прибавку к государственной пенсии;• выбрать ЛУЧШЕЕ из всего многообразия инвестиционных инструментов, доступных частному инвестору.Как это сделать? В книге рассмотрены все вопросы, касающиеся пенсионного обеспечения. В первой части вы познакомитесь с содержанием пенсионной реформы, узнаете структуру государственной пенсии, а также способы влияния на ее размер. Во второй части рассмотрены инвестиционные инструменты для получения негосударственной пенсии: накопительные страховые программы, негосударственные пенсионные фонды, паевые инвестиционные фонды, общие фонды банковского управления, игра на бирже, недвижимость, драгметаллы и др. Третья часть книги посвящена самому главному – правилам выбора подходящих инвестиционных инструментов для будущих пенсионеров. Жизнь на пенсии может быть богатой, а сделать ее такой поможет эта книга.

Наталья Юрьевна Смирнова , Сергей Владимирович Макаров

Финансы / Личные финансы / Финансы и бизнес