Еще более серьезным минусом интервальных прогнозов, составленных по стационарной модели log(USDollar) = с + а x log(USDollar(-l)) + + МА(1) за весь период наблюдений (т. е. на основе данных с июля 1992 г. по июнь 2010 г.), являются слишком широкие интервалы прогнозов для большей части временного ряда, начиная с октября 1999 г. Так, при прогнозе на июль 1992 г. общий диапазон интервального прогноза (верхняя граница интервального прогноза минус нижняя граница интервального прогноза) при 95 %-ном уровне надежности составил лишь 4 коп. (табл. 6.19), в то время как фактическое значение курса доллара было равно лишь 16,12 коп. В свою очередь при прогнозе на июль 2010 г. общий диапазон интервального прогноза был равен 8 руб. 32,27 коп., а фактический курс доллара составил 30 руб. 18,69 коп. При этом в июле 1992 г. диапазон интервального прогноза составлял 25,77 % от фактического курса доллара, а в июле 2010 г. его доля в стоимости курса американской валюты равнялась 27,57 %, в то время как для нестационарной модели доля интервального прогноза для последнего наблюдения равнялась 10,62 %.
6.6. Построение стационарной модели ARMA с оптимизированным временным рядом
Чем же объясняется слишком широкий диапазон интервальных прогнозов для большей части наблюдений, полученных по модели log(USDollar) = с + а x log(USDollar(-l))? Ведь мы уже знаем, что если временной ряд является слабо стационарным, то это означает отсутствие, во-первых, тренда; во-вторых, строго периодических колебаний; в-третьих, систематических изменений дисперсии; в-четвертых, каких-либо иных систематических изменений во временном ряде (см. главу 1). Если систематические изменения дисперсии отсутствуют, то, следовательно, и абсолютная величина диапазона интервального прогноза не должна с течением времени существенно изменяться. Тем не менее по абсолютной величине интервальные прогнозы существенно изменились, что очевидно связано с неправильной спецификацией статистической модели.
Правда, если мы будем составлять интервальные прогнозы относительно логарифмического ряда данных, то в этом случае разница в их диапазоне относительно первого и последнего наблюдения будет не столь значительной. Так, для июля 1992 г. доля диапазона интервального прогноза составит 3,71 % от логарифмического фактического курса доллара, а в июле 2010 г. — 1,97 %.
Почему же стационарная модель log(USDollar) = с + а x log(USDollar(-l)) + МА(1) не позволяет построить прогнозы с оптимальной шириной интервальных прогнозов при переходе к исходному временному ряду? В главе 1 (см. 1.2) мы уже научились распознавать стационарность временного ряда с помощью построения его графика. Попробуем построить аналогичный график для логарифмических остатков (за период с июля 1992 г. по июнь 2010 г.), полученных в результате решения уравнения регрессии по стационарной модели log(USDollar) = с + а x log(USDollar(-l)) + МА(1). В результате получится диаграмма, изображенная на рис. 6.12.
Исходя из рис. 6.12 можно сделать следующие выводы: во-первых, большая часть логарифмических остатков, полученных по стационарной модели log(USDollar) = с + а x log(USDollar(-l)) + МА(1), колеблется примерно в одном диапазоне вокруг нулевого уровня; во-вторых, с течением времени волатильность логарифмических остатков постепенно снижается; в-третьих, на графике видны три значительных всплеска волатильности остатков, однако последний всплеск по сравнению с предыдущими явно незначительный. Отсюда можно сделать вывод, что логарифмические остатки стационарной (точнее сказать, слабо стационарной) статистической модели асимптотически стремятся к относительно узкому диапазону колебаний, т. е. становятся все более стационарными, однако на начальном этапе временного ряда эти колебания еще довольно велики.