Читаем Как растения защищаются от болезней полностью

К сожалению, о специфических элиситерах пока еще мало известно. Но все-таки кое-какие данные на этот счет уже есть. Например, специфический элиситер был обнаружен в клеточных стенках и выделениях возбудителя фитофтороза сои. Элиситер оказался гликопротеином, состоящим на 70–90 % из белка и примерно на 10 % из углеводов, которые, по-видимому, и ответственны за его активность.

Поверхностными гликопротеинами оказались специфические элиситеры, выделенные из возбудителей антракноза фасоли и бактериоза сои.

Предполагается, что липополисахарид наружной мембраны бактерий обладает свойствами специфического элиситера. Мы уже писали, что сапрофитные, либо убитые нагреванием, либо, наконец, гетерологичные (несовместимые) для данного вида растений, бактерии иммобилизуются в их межклеточном пространстве. При этом бактерии как бы окутываются гранулярным и фибриллярным материалом, транспортирующимся везикулами из растительных клеток, и с помощью этого материала прикрепляются к клеточной стенке растения. В результате прикрепления наступает тесный контакт растительных клеток с липополисахаридом, который и распознается. Установлено, что его состав коррелирует со способностью бактерии, из которой он выделен, индуцировать реакцию СВЧ. Так, липополисахарид штаммов, которые индуцировали СВЧ, отличался от такового у неиндуцирующих штаммов молекулярной массой и отношением ксилозы и рамнозы к глюкозе.

Однако число элиситеров, обладающих специфическими свойствами, пока еще крайне ограниченно. Возможно, это зависит от того, что обнаружению специфических элиситеров мешают неспецифические, которые наряду со специфическими присутствуют у паразитов. Возможно, искать специфические элиситеры у фитопатогенов в искусственной культуре, как это делают исследователи, бесполезно, поскольку при этих условиях не могут проявиться их паразитические свойства.

Итак, наличие специфических элиситеров пока еще находится под сомнением, тогда как большинство известных к настоящему времени элиситеров обладает неспецифическими свойствами. Это означает, что они присутствуют у всех рас фитопатогенов, независимо от наличия у них генов вирулентности, и с их помощью можно индуцировать защитные реакции у всех сортов растений, независимо от присутствия у них генов устойчивости.

Маловероятно, чтобы растения обладали отдельными распознающими системами на каждый вид и расу фитопатогенов, с которыми им приходится сталкиваться в природе. Скорее всего, в роли неспецифических элиситеров могут служить структурные полисахариды клеточных стенок микроорганизмов.

Как же проникают в растения те фитопатогены, которые обладают незамаскированными неспецифическими элиситерами? Здесь мы расскажем о четвертой возможности, которая состоит в наличии у паразитов антиметаболитов, перекрывающих действие элиситеров. Речь идет о присутствии у некоторых паразитов антиэлиситеров, или супрессоров, которые в противовес элиситерам не индуцируют, а, наоборот, подавляют защитные реакции растений.

Супрессоры характерны не только для иммунных систем растений, но и животных. В начале 70-х годов была открыта особая группа лимфоцитов — супрессоров, оказывающая подавляющее действие на иммунные лимфоциты.

По-видимому, для каждой системы живого организма необходима специфическая антисистема, которая регулирует эту систему по принципу обратной связи.

В растительном мире супрессоры-антииндукторы были открыты через несколько лет после обнаружения индукторов-элиситеров. Предпосылкой к созданию таких представлений послужил давно установленный факт, что растение, зараженное совместимой расой того или иного патогена, становится восприимчивым не только к авирулентной расе того же патогена, но и к непатогенам, т. е. микроорганизмам, которые ранее не были способны поражать данный вид растения. Так, предварительное заражение ячменя вирулентной расой мучнистой росы сделало его восприимчивым не только к авирулентной расе того же паразита, но даже к возбудителю мучнистой росы дыни. Заражение картофеля совместимой расой возбудителя фитофтороза делало его восприимчивым к целому ряду микроорганизмов, обычно не поражающих неповрежденный картофель, даже к сапрофитам. Недаром существует выражение «вторичные инфекции», т. е. инфекции, возникающие на уже инфицированном растении.

Возможно, одной из причин вторичных инфекций являются супрессоры, подавляющие защитные реакции растения. По-видимому, супрессоры фитопатогенных микроорганизмов можно разделить на две группы: одни убивают или повреждают растительные клетки, тогда как другие только блокируют, задерживают защитные реакции. Если исходить из такой классификации, то к первой группе супрессоров следует отнести токсины паразитов. Естественно, что растительная клетка, убитая токсинами паразита, лишается способности распознавать патоген, а тем более отвечать защитными реакциями.

Перейти на страницу:

Похожие книги

Павлов И.П. Полное собрание сочинений. Том 1.
Павлов И.П. Полное собрание сочинений. Том 1.

Первое издание полного собрания сочинений И. П. Павлова, предпринятое печатанием по постановлению Совета Народных Комиссаров Союза ССР от 28 февраля 1936 г., было закончено к 100-летию со дня рождения И. П. Павлова - в 1949 г.Второе издание полного собрания сочинений И. П. Павлова, печатающиеся по постановлению Совета Министров СССР от 8 июня 1949 г., в основном содержит, как и первое, труды, опубликованные при жизни автора. Дополнительно в настоящем издание включен ряд работ по кровообращению и условным рефлексам, а также «Лекции по физиологии», не вошедшие в первое издание. Кроме того, внесены некоторые изменения в расположение материала в целях сгруппирования его по определенным проблемам с сохранением в них хронологической последовательности.Второе издание полного собрания сочинений И. П. Павлова выходит в 6 томах (8 книгах). Библиографический, именной и предметно-тематический указатели ко всему изданию. а также очерк жизни и деятельности И. Павлова составят отдельный дополнительный том.

Иван Петрович Павлов

Биология, биофизика, биохимия
Метаэкология
Метаэкология

В этой книге меня интересовало, в первую очередь, подобие различных систем. Я пытался показать, что семиотика, логика, этика, эстетика возникают как системные свойства подобно генетическому коду, половому размножению, разделению экологических ниш. Продолжив аналогии, можно применить экологические критерии биомассы, продуктивности, накопления омертвевшей продукции (мортмассы), разнообразия к метаэкологическим системам. Название «метаэкология» дано авансом, на будущее, когда эти понятия войдут в рутинный анализ состояния души. Ведь смысл экологии и метаэкологии один — в противостоянии смерти. При этом экологические системы развиваются в направлении увеличения биомассы, роста разнообразия, сокращения отходов, и с метаэкологическими происходит то же самое.

Валентин Абрамович Красилов

Культурология / Биология, биофизика, биохимия / Философия / Биология / Образование и наука