Методы первого уровня жизненно необходимы. Чтобы ставить диагнозы, делать прогнозы и производить прочие действия с данными, нам для начала необходимо знать, что происходило в прошлом. Но это лишь первый этап процесса, а не сам процесс целиком. Правильная интерпретация знаний, полученных на первом аналитическом уровне, поможет вам перейти ко второму.
Уровень 2: диагностические аналитические методы
Что ж, теперь, когда мы разобрались с уровнем 1, нам будет проще понять уровень 2. Предлагаю начать с аналогии. Представьте себе, что вы простудились и болеете уже несколько дней. У вас температура, озноб, кашель, да и в целом вам нехорошо. Вы решаете сходить к врачу. Вы ждете в коридоре, и наконец вас впускают. Врач вас осматривает и заключает: «Ну что же, вы больны». А затем выходит из кабинета и больше не возвращается. И как вам такой прием? Пойдете ли вы к этому врачу в следующий раз? Все, что он сделал, – сообщил то, что вам и так известно. Знаете, что это было?
Теперь представьте, что врач вас осматривает, описывает симптомы болезни, а затем задает вам вопросы, чтобы выявить причину проблемы и поставить правильный диагноз. Имея диагноз, он уже может помочь вам справиться с болезнью и почувствовать себя лучше. Это второй уровень аналитики –
Теперь, когда вы получили наглядное (надеюсь) представление, как первый аналитический уровень может вести ко второму, давайте разберемся со словом «диагностика».
Одно из определений слова «диагностика» – «выявление природы заболевания или другой проблемы путем исследования симптомов».
Да, в мире данных и аналитики мы не диагностируем болезни людей или животных, но ставим диагноз тому, что происходит с бизнесом, и пытаемся докопаться до корня проблемы. Еще одно понятие, неразрывно связанное с диагностическим анализом, – это
Чтобы понять важность диагностики, давайте разберемся, в чем состоит основная цель использования данных и дата-аналитики. Зачем организациям данные и их анализ? Почему они тратят даже не тысячи, а миллионы долларов на работу с информацией? Ответ очевиден. Современный мир стал цифровым, и необходимость дата-аналитики уже не обсуждается – организации должны научиться извлекать из нее выгоду. Но что, если сотрудники, отвечающие за работу с данными, не знают, как извлечь из них действительно ценные знания и инсайты? Если они не умеют поставить «диагноз», что за процесс породил те или иные данные, то напоминают доктора, который может лишь констатировать факт болезни. Если организация будет учить сотрудников выявлять причины тех или иных проблем с помощью диагностических методов, у нее будет больше шансов на возврат инвестиций в данные и дата-аналитику.
Еще один ключевой элемент второго уровня аналитики (так же, как и первого) – это демократизация данных, то есть стремление организации донести данные до коллектива. Во-первых, что означает полная демократизация? Она предоставляет коллективу свободу эффективного использования всей имеющейся информации. Коллектив состоит из сотрудников с разным образованием и профессиональным опытом: нужно поставить уникальные способности каждого из них на службу организации.
Как и в случае с дескриптивными методами, диагностический уровень аналитики подразумевает использование множества инструментов и компьютерных программ, предназначенных для анализа данных. Часть из них те же, что используются и в описательном анализе: Microsoft Excel, Microsoft Power BI, Qlik и Tableau. Организации прибегают к демократизации данных, чтобы стимулировать сотрудников не только описывать, что происходит, но и находить причины этого.
Ключевое слово здесь – «инсайт». Именно проникновение в суть помогает понять, как первый и второй уровни аналитики действуют вместе, и объединить их. Первый уровень описывает,