Вкладывая массу средств в сотрудников, занятых предиктивной аналитикой, обработку данных и технологии, организации не получают выгоду от этих инвестиций. Если сотрудники не способны как следует использовать данные и дата-аналитику, потенциальная польза предиктивного моделирования и методов анализа стремится к нулю. Но если сотрудники обладают нужными навыками, предсказательная аналитика может принести большую пользу.
Какие технологии и компьютерные программы могут помочь в успешном предиктивном анализе? Во-первых, это два языка программирования, которые завоевывают все большую популярность в сфере обработки данных, – Python и R. С их помощью специалисты по статистике, количественной аналитике и т. д. строят модели. Кроме того, они так здорово называются! Один – как змея, а другой похож на рычание тигра: р-р-р.
Кроме того, есть компании, производящие ПО, которое упрощает обработку данных для конечных пользователей (тех, кто уже хорошо знаком с первыми двумя уровнями аналитических методов). Среди таких компаний – Alteryx, SAS, Apache Spark, D3 и другие. В прогностическом анализе можно использовать все те же Microsoft Excel, Tableau и Qlik. На самом деле рядовым сотрудникам вовсе не обязательно быть профессионалами в обработке данных – достаточно простой дата-грамотности.
Мы уже упоминали о профессиях сотрудников, которые нужны для предиктивного анализа: специалисты по обработке данных и количественному анализу, специалисты по статистики и т. д. Даже дата-аналитики могут применять предиктивный анализ. Кроме того, в мире дата-грамотности есть место не только технарям: любой, кто способен говорить на языке данных, может пользоваться и предсказательными методами. Таким образом, сотрудники, имеющие дело преимущественно с дескриптивным и диагностическим анализом, при наличии модели, анализа и других составляющих могут принимать участие и в работе с прогнозами – пытаясь разобраться в них и присоединяясь к обсуждениям.
Уровень 4: прескриптивные (предписывающие) аналитические методы
Итак, мы добрались до последнего уровня – прескриптивной аналитики. У этого термина есть разные определения и интерпретации. Здесь мы будем говорить о технологиях, определяющих, что именно нужно делать на основании данных и дата-аналитики, и о бизнес-решениях, которые следует принять. Таким образом, данные или технологии
Рассматривать мир прескриптивных методов следует как способ дополнить человеческие возможности. Технологии, используемые на этом уровне, позволяют просеивать огромные объемы данных, что ускоряет процесс анализа и исключает возможность человеческих ошибок. Однако затем нужно правильно интерпретировать данные, предоставленные программой. Предписывающие методы помогают получить достоверные результаты анализа, но принятие на их основе правильных решений – задача человека.
Какие существуют технологии прескриптивного анализа? Есть много компьютерных программ и сервисов – от более простых и понятных Domo и Alteryx до таких продвинутых, как SAS или SAP Predictive Analytics. Эти инструменты способны стать прекрасным подспорьем в прескриптивном анализе, но, если у вас нет сотрудников, которые умеют интерпретировать результаты работы программ и принимать решения самостоятельно, вложения в ПО могут оказаться бессмысленными.
Примеры использования четырех уровней аналитических методов в реальной жизни
Разбор реальных примеров использования всех четырех уровней аналитики поможет нам и укрепить фундамент, и обрисовать более широкую картину. Каждый из уровней опирается на предыдущий, и сейчас мы изучим, как они взаимодействуют. Кроме того, примеры помогут нам понять, как распределяются роли сотрудников в системе анализа.
Каждый из этих примеров можно связать с другими. Описательная аналитика – это привычная часть мира бизнеса, все мы с ней регулярно сталкиваемся:
● сводки ежемесячных прибылей, представляемые руководителю отдела продаж;
● ежеквартальные маркетинговые отчеты о коэффициенте кликабельности;
● ежеквартальные отчеты по индексу потребительской лояльности.
Кто из сотрудников участвует в дескриптивном анализе? Все! Топ-менеджеры рассматривают отчеты, бизнес-аналитики и дата-аналитики их составляют, специалисты по обработке данных используют свои методы, конечные пользователи читают и интерпретируют сводки и т. д. У каждого своя функция.