Первая составляющая дата-грамотности – это чтение данных. Что же значит читать данные? Начнем с определения самого слова «читать» и примеров из жизни. Открыв «Оксфордский словарь», мы узнаем следующее: «Читать – видеть и понимать значение букв и символов (в письменном или печатном виде), из которых состоит текст, мысленно интерпретируя их»[19]
. Что-что? Как-то замысловато это выглядит для такого простого слова. Конечно, все мы знаем, что такое «читать», – вы же сейчасВ нашем случае читать данные означает смотреть на имеющиеся данные и понимать их. Все просто и понятно. Существует множество форм получения и представления данных, и мы должны научиться воспринимать все эти формы, чтобы успешно понимать все данные, с которыми нам приходится работать. Именно в этом состоит одна из главных причин нехватки навыков и «застревания» организаций на первом уровне анализа данных: большинство людей обладают лишь базовыми навыками чтения и понимания данных. Если человек умеет читать данные лишь на первом уровне, описательном, он неизменно будет возвращаться к дескриптивному анализу, чтобы не выходить из зоны комфорта. Это свойственно каждому из нас. Может быть, дело в эволюции. Все мы возвращаемся туда, где нам удобно (поэтому так важно преодолеть нехватку навыков: дата-грамотность должна стать удобной для всех). Только представьте себе: вот вы устроились на вашем любимом диванчике и никуда не хотите уходить. Если необходимость глубже вникать в данные причиняет нам дискомфорт, мы остаемся на первом уровне – как на любимом диванчике.
Теперь, когда мы знаем, что такое чтение данных, давайте запомним: да, не все люди читают данные одинаково хорошо. И это
Представьте себе крупную торговую компанию, успешно запустившую новый продукт. К запуску готовились долго, но все же сумели принять обоснованное решение, положившись на дата-грамотность сотрудников и всю мощь аналитических методов. Как разные группы сотрудников пришли к окончательному решению? Кто «читал» необходимые данные?
ЧТЕНИЕ ДАННЫХ ОТДЕЛОМ ИССЛЕДОВАНИЙ И РАЗРАБОТОК
Давайте сначала взглянем на отдел исследований и разработок. Его сотрудникам необходимо читать, понимать и использовать очень много данных. В нашем случае команда потратила много времени и сил на сбор внутренних и внешних данных – и в итоге, изучив результаты опросов, а также сведения о конкурентах и рыночной ситуации, смогла оценить жизнеспособность нового продукта и другие факторы. Вы и сами понимаете, что при чтении данных и поиске информации, необходимой для принятия решения, сотрудники использовали как дескриптивные, так и диагностические аналитические методы.