Сопоставляя данные таблицы № 1 и расчеты, приведенные выше, можно сделать несколько выводов:
• для большинства легковых автомобилей реальная мощность, подводимая к стартеру, превышает его номинальную (паспортную) мощность в 2–2,5 раза и составляет:
1900 =< Рст =< 2700 [Вт];
• для грузовых автомобилей с карбюраторными двигателями этот показатель может быть еще выше:
2400 =< Рст =< 3310 [Вт];
• для автомобилей с дизельным двигателем (у них две батареи 6 СТ-190 включены последовательно):
Рст = 2∙10,5∙570 = 11970 [Вт].
При расчете понижающего трансформатора пускового устройства необходимо учесть потери на выпрямительном блоке, подводящих проводах, окисленных контактных поверхностях соединительных клещей и выводах стартера. Как показал опыт, мощность понижающего трансформатора пускового устройства для легкового автомобиля должна быть не менее
За основу была взята схема; приведенная в [2], но с более мощным трансформатором Т1 (рис. 1).
Рис. 1.
В авторском варианте понижающий трансформатор был изготовлен на тороидальном сердечнике от статора сгоревшего асинхронного электродвигателя мощностью 5 кВт. Его данные выглядят следующим образом:
Sст = 27 см2, Sст = а∙в (
Рис. 2,
Количество витков на 1 В рабочего напряжения рассчитывалось по формуле:
Т = 30/Scт.
Число витков первичной обмотки трансформатора составило:
W1 = 220∙Т = 220∙30/27 = 244;
вторичной обмотки:
W2 = W3 = 16∙Т = 16∙Т = 16∙30/27 = 18.
Первичная обмотка намотана проводом ПЭТВ диаметром 2,12 мм, вторичная — алюминиевая шина сечением 36 мм2. Выключатель SA1 типа АЕ-1031 (с встроенной тепловой защитой) на ток 25 А. Диоды VD1, VD2 типа Д161-250.
Амплитуда магнитной индукции в сердечнике трансформатора
Для желающих самостоятельно рассчитать параметры понижающего трансформатора можно воспользоваться методиками, изложенными в [2], [3] — см. список литературы.
Несколько советов о подготовке тороидального сердечника. Статор вышедшего из строя электродвигателя освобождают от остатков обмотки. С помощью остро заточенного зубила и молотка вырубают зубцы статора. Сделать это несложно, так как железо мягкое, но нужно воспользоваться защитными очками и рукавицами. Затем из металлического прутка диаметром 7–8 мм готовят две П-образные скобы, которыми сердечник трансформатора будет крепиться к рамке-основанию. На обоих концах скоб нарезают резьбу под гайки М6. Из металлической ленты, толщиной 3–4 мм и шириной 18–20 мм, согнутой П-образно, готовят рукоятку трансформатора. Края П-образной пластины дополнительно изгибают навстречу друг другу, получая «язычки» длинной 5–8 см, к которым крепят деревянную рукоятку. С этой целью в «язычках» просверливают отверстия диаметром 7 мм. Две скобы и металлическую часть рукоятки обматывают слоем ткани, пропитанной эпоксидной смолой, приклеивают к внутренней части тороида: рукоятку вверху, скобы внизу на некотором расстоянии друг от друга. Весь сердечник также покрывают одним-двумя слоями ткани, пропитанной эпоксидной смолой. После высыхания эпоксидной смолы приступают к намотке обмоток. Первичную обмотку мотают первой, равномерно распределяя по всему периметру. После выполнения первичной обмотки трансформатор включают в сеть и замеряют ток холостого хода, который не должен превышать 3,5 А. Необходимо помнить, что при
Перед намоткой вторичной обмотки в металлической части рукоятки сбоку сверлят отверстие под болт с резьбой М12, который будет служить выводом от средней точки обмотки и одновременно «плюсовой» клеммой. Показанное на схеме соединение выпрямительных диодов позволяет использовать металлические элементы рамки-основания пускового устройства не только для крепления диодов, но и в качестве теплоотвода без диэлектрических прокладок.
Выводы вторичных полуобмоток соединяют с «плюсовой» клеммой, витки равномерно распределяют по всему периметру сердечника. При укладке используют деревянный молоток.