Читаем Камень, ножницы, теорема. Фон Нейман. Теория игр полностью

У нас появится пространство, в котором есть живые клетки, обозначенные черным цветом, и мертвые, обозначенные белым. Теперь остается только установить правила развития, то есть детально описать, как эти клетки будут развиваться в своей среде. Если вышеупомянутый рисунок представляет собой фазу 1, у нас должен быть какой-то критерий, чтобы перейти к фазе 2 и, разумеется, чтобы перейти от фазы 2456 к фазе 2457. Говоря математическим языком, нам нужен алгоритм, который, если известно состояние фазы N, позволяет сконфигурировать состояние фазы N + 1. Поскольку в нашей решетке на данный момент нет никаких странных элементов вроде пакменов или тому подобных, на каждую из наших клеток могут действовать только другие клетки из ее окрестности. Одна из самых простых окрестностей — это окрестность по сторонам света (север, юг, запад, восток); то есть клетка может взаимодействовать только с клетками, расположенными над ней, под ней или по сторонам от нее. В этом случае она называется окрестностью фон Неймана. Если к этому мы прибавим диагонали, то получим так называемую окрестность Мура. Становится понятно, что возможности определения окрестностей почти безграничны. Мы можем сказать, например, что влиять будут только клетки, которые находятся на определенном расстоянии г. Существуют очень сложные правила окрестностей, которые описываются посредством матричных функций, но мы их не будем рассматривать в этой книге. Начнем с вышеуказанного клеточного пространства и определим правила, которые действуют для окрестности Мура.

1. Клетки с четным количеством живых соседних клеток умирают.

2. Клетки с нечетным количеством живых соседних клеток порождают живую клетку.

РИС. 1

РИС. 2


Таким образом, мы получим три фазы, показанные на рисунке 2.

Можно также начать с меньшего количества ячеек и установить другие правила. Несомненно, дойти до определенной фазы и наблюдать за результатом (существуют простые компьютерные программы, которые могут быстро показать нам фазу 1000) — интереснейшее занятие. Мы увидим удивительные фигуры и ситуации: можно создать устойчивые конфигурации, вымершие виды, натюрморты, хищников или структуры, которые двигаются в решетке, не теряя своей формы.

Это вариант игры «Жизнь», созданной британским математиком Джоном Хортоном Конвеем в 1970 году. Помимо того что это просто очень интересная игра, имеющая важное применение в математике, она может быть полезным инструментом в исследованиях и помогает понять некоторые сложные природные процессы, так как является мощной моделью, которую можно применить, например, при изучении влияния разлива нефти на морскую фауну.



ОТ МЕЧТЫ ЛЕЙБНИЦА К МЕЧТЕ ФОН НЕЙМАНА

Развитие человеческой мысли скрыто от нас, оно следует законам, которые пока не удалось выявить. Однако в истории науки были великие мыслители, считавшие, что если можно было бы обозначить идеи номерами и присвоить каждой свое число, то достаточно было бы произвести вычисления с этими числами, чтобы узнать, какие из них верные, а какие ложные. Собственно, это и было мечтой Готфрида Лейбница (1646-1716).

Немецкий поэт Фридрих Гёльдерлин (1770-1843) однажды сказал: «Когда человек мечтает, он король, когда размышляет — нищий». Несомненно, Лейбниц очень походил на короля...

Тем не менее для таких научных деятелей, как Паскаль, Лейбниц или Декарт, склонных в своих размышлениях если не к прагматизму, то, по крайней мере, к некоей конкретике, размышлять означало воплощать свои идеи на практике. И в этот момент мечта могла обернуться кошмаром. Следовательно, нас не должно удивлять, что результаты их первых выводов воплощались в вычислительных машинах, ведь вычисление — одна из первых абстрактных операций, выполняемых человеческим разумом. К тому же время показало, что действие самых продвинутых «думающих» машин, которые мы способны сделать, основано на вычислениях по строго определенным правилам компьютерной алгебры. Эта сложная и очень специализированная область математики, появившаяся вместе с информатикой, начала зарождаться еще в сознании философов и математиков.


Истина слишком сложна, нам дано лишь немного приблизиться к ней.

Джон фон Нейман


Перейти на страницу:

Похожие книги

Адмирал Ее Величества России
Адмирал Ее Величества России

Что есть величие – закономерность или случайность? Вряд ли на этот вопрос можно ответить однозначно. Но разве большинство великих судеб делает не случайный поворот? Какая-нибудь ничего не значащая встреча, мимолетная удача, без которой великий путь так бы и остался просто биографией.И все же есть судьбы, которым путь к величию, кажется, предначертан с рождения. Павел Степанович Нахимов (1802—1855) – из их числа. Конечно, у него были учителя, был великий М. П. Лазарев, под началом которого Нахимов сначала отправился в кругосветное плавание, а затем геройски сражался в битве при Наварине.Но Нахимов шел к своей славе, невзирая на подарки судьбы и ее удары. Например, когда тот же Лазарев охладел к нему и настоял на назначении на пост начальника штаба (а фактически – командующего) Черноморского флота другого, пусть и не менее достойного кандидата – Корнилова. Тогда Нахимов не просто стоически воспринял эту ситуацию, но до последней своей минуты хранил искреннее уважение к памяти Лазарева и Корнилова.Крымская война 1853—1856 гг. была последней «благородной» войной в истории человечества, «войной джентльменов». Во-первых, потому, что враги хоть и оставались врагами, но уважали друг друга. А во-вторых – это была война «идеальных» командиров. Иерархия, звания, прошлые заслуги – все это ничего не значило для Нахимова, когда речь о шла о деле. А делом всей жизни адмирала была защита Отечества…От юности, учебы в Морском корпусе, первых плаваний – до гениальной победы при Синопе и героической обороны Севастополя: о большом пути великого флотоводца рассказывают уникальные документы самого П. С. Нахимова. Дополняют их мемуары соратников Павла Степановича, воспоминания современников знаменитого российского адмирала, фрагменты трудов классиков военной истории – Е. В. Тарле, А. М. Зайончковского, М. И. Богдановича, А. А. Керсновского.Нахимов был фаталистом. Он всегда знал, что придет его время. Что, даже если понадобится сражаться с превосходящим флотом противника,– он будет сражаться и победит. Знал, что именно он должен защищать Севастополь, руководить его обороной, даже не имея поначалу соответствующих на то полномочий. А когда погиб Корнилов и положение Севастополя становилось все более тяжелым, «окружающие Нахимова стали замечать в нем твердое, безмолвное решение, смысл которого был им понятен. С каждым месяцем им становилось все яснее, что этот человек не может и не хочет пережить Севастополь».Так и вышло… В этом – высшая форма величия полководца, которую невозможно изъяснить… Перед ней можно только преклоняться…Электронная публикация материалов жизни и деятельности П. С. Нахимова включает полный текст бумажной книги и избранную часть иллюстративного документального материала. А для истинных ценителей подарочных изданий мы предлагаем классическую книгу. Как и все издания серии «Великие полководцы» книга снабжена подробными историческими и биографическими комментариями; текст сопровождают сотни иллюстраций из российских и зарубежных периодических изданий описываемого времени, с многими из которых современный читатель познакомится впервые. Прекрасная печать, оригинальное оформление, лучшая офсетная бумага – все это делает книги подарочной серии «Великие полководцы» лучшим подарком мужчине на все случаи жизни.

Павел Степанович Нахимов

Биографии и Мемуары / Военное дело / Военная история / История / Военное дело: прочее / Образование и наука