В последний раз фон Нейман появился на публике в феврале 1956 года — в Белом доме, когда президент Эйзенхауэр вручил ему медаль Свободы (Medal of Freedom). После этого он уже не выходил из дома. На конец марта того года была запланирована авторитетная конференция Силлмана в Йельском университете. Фон Нейман был приглашен выступить на ней й рассказать о своей работе по взаимодействию компьютера и мозга. Поскольку сам ученый не мог принять в ней участие, университет предложил, чтобы кто-то другой прочел текст выступления за него. Однако фон Нейману не удалось завершить эту последнюю задачу, и рукопись так и не была обнародована. В апреле 1956 года он был госпитализирован в больницу Уолтера Рида, из которой больше не вышел. Несмотря на плохое состояние здоровья, фон Нейман попросил оборудовать ему временный кабинет, где он мог бы продолжить работу.
Из-за сильных болей врачам пришлось давать ученому большие дозы морфина, что отразилось на его мыслительных способностях, и это постепенное ухудшение интеллекта было самым нестерпимым следствием для фон Неймана. Незадолго до смерти он удивил всех, обратившись к религии: до сих пор ученый был убежденным агностиком. Возможно, фон Нейман искал утешения, которого нигде больше не мог найти. Но все было бесполезно, поскольку, по свидетельству близких, на протяжении последнего года его дни и ночи были непрекращающейся адской мукой.
Джон фон Нейман умер в Вашингтоне 8 февраля 1957 года в возрасте 54 лет.
Джон фон Нейман
В математике можно провести разделение на чистую науку и прикладную. Сегодня в большинстве университетов они считаются разными дисциплинами, но так было не всегда. В начале XX века технический прогресс требовал от инженеров все большего использования математики и если не создания, то по крайней мере адаптации различных математических инструментов к их работе. С другой стороны, новые открытия, которые произвели революцию в физике (главным образом теория относительности и квантовая механика), породили математическую физику — самостоятельную дисциплину на границе чистой и прикладной математики. Хотя это не всегда признается, но обычно между чистыми и прикладными науками существует некоторая дистанция. В этом контексте термин «чистая» можно понимать в самом буквальном смысле. По мнению пуристов, теоретические исследования не должны зависеть от материальных потребностей окружающего мира. Случай фон Неймана действительно уникален, поскольку его гений проявился как в чистой теории, так и в создании математических инструментов и даже механических устройств для решения вполне конкретных задач. Ему были одинаково подвластны обе области. Ученый занимался такими задачами чистой математики, как аксиоматизация теории множеств и квантовая механика, а также получил прекрасные результаты в таких земных вопросах, как экономическая теория, баллистика и проектирование взрывателя атомной бомбы. Немногие ученые могли похвастаться подобной универсальностью, которой фон Нейман посвятил любопытные размышления в своей статье The Mathematician («Математик»). Она была опубликована в полном собрании его сочинений, и в ней говорится о двойственной природе математической науки, по отношению к которой фон Нейман в конце концов занимает четкую позицию.
Джон фон Нейман
Кажется, что из-за высокого уровня абстракции чистая математика может быть очень далека от того, что мы называем реальностью. Однако фон Нейман утверждал, что в математике всегда присутствует эмпирический зародыш, то есть она всегда основывается на каком-либо прямом реальном опыте. Он приводил два примера. Первый — геометрия, дисциплина, вместе с которой родилась математика. Сама этимология этого слова является достаточным доказательством, так как подразумевает измерение предметов. Аксиоматизация, проведенная Евклидом, отдаляет ее от эмпиризма и превращает в чистую науку. Многовековая проблема пятого постулата объясняется, по мнению фон Неймана, тем, что это единственный из всех пяти постулатов, в котором появляется бесконечное пространство, далекое от нашего опыта. Оно вновь находит свое место в реальности с момента использования неевклидовой геометрии в таких областях физики, как, например, теория всеобщей относительности. Второй пример — исчисление (исходная точка современной математики), зародившееся в трудах немецкого астронома и математика Иоганна Кеплера (1571-1630), когда тот пытался вычислить объемы фигур с изогнутыми поверхностями, что в конце концов привело к появлению понятия интегралов.