Читаем Кантор. Бесконечность в математике. полностью

В Галле под руководством Генриха Эдуарда Гейне (1821— 1881) Кантор окончательно сосредоточился на вычислении и с 1870 по 1872 год опубликовал пять статей (которые будут рассмотрены в следующей главе). В них он исследовал определенный тип бесконечных сумм. И хотя, как и бесконечные множества, они понимались потенциально, а не актуально бесконечными, именно вследствие этих первых работ в Галле Кантор задумался об актуальной бесконечности. Впервые она появилась в его научных трудах, хоть и неявно, в статье 1874 года.

Помимо публикации этой работы, разделившей его научную карьеру на «до» и «после», в 1874 году в жизни Кантора произошло еще одно важное событие — 9 августа он женился.

Валли Гутман, его невеста, тоже любила искусство, играла на фортепиано и брала уроки пения. Медовый месяц они провели в Интерлакене, туристическом городке Швейцарии. И чтобы лучше очертить характер ученого, отметим, что большую часть времени он беседовал о математике с Дедекиндом.

У Валли Гутман и Георга Кантора родились шестеро детей: четыре девочки и два мальчика. Веселый нрав Валли прекрасно дополнял серьезный и даже суровый характер Кантора и определял атмосферу их дома: как было принято в то время в кругах немецких университетских профессоров, семья вела очень активную общественную жизнь.

БЕСКОНЕЧНОСТЬ ПО КАНТОРУ

Теперь проанализируем статью liber eine Eigenschaft des Inbegriffes alter reellen algebraischen Zahlen («Об одном свойстве совокупности всех действительных алгебраических чисел»), опубликованную Кантором в 1874 году в «Журнале Крелле». В этой статье уже содержались основные идеи, которые позже позволили Кантору прийти к своей теории бесконечности, несмотря на то что Карл Вейерштрасс посоветовал ему скрыть их или хотя бы не подчеркивать их революционность. О чем же говорилось в статье? Что это были за идеи? Почему их следствия были столь провокационными? И что же это за «действительные алгебраические числа»?

Начнем анализ с одного из первых утверждений теории Кантора.

Оно гласит, что два множества предметов можно соотнести друг с другом, если член одного из них сопоставим с членом другого так, что ни в одном из этих множеств не останется члена без пары. Галилей проделал это с группами натуральных чисел и квадратных (см. рисунок).

Говоря математическим языком, эта операция является «установлением взаимно однозначного соответствия» между членами множеств.

Заметим, что если в обоих множествах больше не осталось членов, то сказать «два множества эквивалентны» — значит сказать, что в них одинаковое количество членов.

Теория Кантора основывается на том, что вопреки мнению Галилея этот принцип может быть перенесен на актуально бесконечные группы без какого-либо противоречия. То есть можно утверждать, что если два множества эквивалентны, в них одинаковое количество членов. Именно это и хотел доказать Кантор.

Вопросы бесконечности бросали вызов разуму и воображению человека, как никакая другая проблема за всю историю человеческой мысли.

Эдвард Каснер и Джеймс Ньюмен, «Математика и воображение», 1940 год

Однако говорить о «количестве членов» актуально бесконечного множества несколько странно, потому что, как сказал бы Аристотель, не существует числа, которое выражает это количество. (По крайней мере его не существовало в середине 1870-х годов. А позже, как мы увидим, оно появится. Отметим также, что знаменитый символ °°, введенный в 1655 году английским математиком Джоном Валлисом, обозначает потенциальную бесконечность, а не актуальную.) Так Кантор был вынужден ввести понятие «кардинальное число». Оно выражает идею количества членов законченной или актуально бесконечной группы, не говоря о количестве открыто. Вообще-то Кантор употребил термин «мощность», но после математики изменили его на «кардинальное число». Сегодня оба термина употребляются наравне.

Кардинальное число множества, по Кантору, — это характеристика, которая сохраняется после абстрагирования сущности его членов, а также их взаимоотношений.

Возьмем группу букв, составляющих слово «небо». Их кардинальное число, по определению Кантора, можно записать как ****. Эти символы обозначают членов группы, природа которой рассматривается как абстракция. Кардинальное число последовательности чисел 2,3, 5,7 тоже было бы ****.

У обеих групп одно и то же кардинальное число, поскольку у них одинаковое количество членов (четыре, разумеется). Действительно, **** могло бы стать пусть примитивным, но действенным способом обозначения числа 4. Кардинальное число множества натуральных чисел выглядело бы как *********** (символы продолжаются бесконечно). Таким же было бы и кардинальное число множества квадратных чисел. Следуя рассуждениям Кантора, если два множества эквивалентны, у них одинаковая мощность.

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука