Читаем Кантор. Бесконечность в математике. полностью

Теперь докажем, что два отрезка разной длины эквивалентны. Сначала проведем две прямые через концы отрезков и обозначим точку их пересечения буквой О. Затем проведем еще прямые через точку О. На рисунке показано, как с их помощью соотнести с каждой точкой Р на одном отрезке точку F на другом.

Еще один пример. Если у нас есть точка с координатами 0,2 и 0,7, запишем эти числа как 0,20000... и 0,70000... (количество нулей не имеет значения). Этой паре будет соответствовать число 0,270000..., то есть 0,27. На рисунке 4 показаны и другие примеры этого соответствия. То есть мы видим, что каждому числу в промежутке от 0 до 1 соответствует конкретная пара координат и каждой паре координат соответствует конкретное число. Другими словами, мы установили взаимно однозначное соответствие между любым отрезком и любым квадратом: следовательно, мы можем утверждать, что у этих множеств одинаковая мощность. Выше мы сказали, что любой отрезок равномощен полной оси. Аналогично, мы можем доказать, что мощность квадрата такая же, как мощность всей плоскости.

Таким образом, мы приходим к выводу, что любая прямая, любой отрезок, любой квадрат и плоскость имеют одинаковую мощность. Это верно и для трехмерных объектов, так как можно доказать, что мощность отрезка равна мощности куба, которая, в свою очередь, равна мощности всего трехмерного пространства.

РИС. 3: Взаимно однозначное соответствие между отдельными числами и парами чисел.

РИС. 4: Некоторые примеры соответствия между числом, находящимся между О и 1, и парой чисел.

Вернемся к основному вопросу задачи: существует ли множество с большей мощностью, чем мощность вещественных чисел? Мы все еще не нашли решение: ни квадрат, ни плоскость, ни трехмерное пространство (все это бесконечные множества точек) не годятся в качестве ответа. Однако нет у нас и аргументов, доказывающих, что такое множество существовать не может.

ОТРЕЗОК, ОКРУЖНОСТЬ, ПРЯМАЯ

На рисунке 1 показано, как можно доказать равномощность окружности с выколотой точкой (ее отсутствие обозначено пустым кружком) отрезку без концов, искривляя его. Оба эти множества точек — в сущности одно и то же, их единственное различие заключается в графическом изображении на плоскости. В одном случае они располагаются на прямой, в другом — по окружности. На рисунке 2 показано, как установить взаимно однозначное соответствие между окружностью без точки и прямой. Каждой точке Р окружности соответствует точка F на прямой (Р и Р' должны всегда находиться на одной линии с недостающей окружности точкой). Исходя из транзитивного свойства мы заключаем, что отрезок без концов эквивалентен замкнутой оси.

РИС.1

РИС. 2

В 1877 году сам Кантор не знал, существует ли множество с мощностью большей, чем у вещественных чисел, и смог дать ответ на этот вопрос только в 1883 году.

КОНТИНУУМ-ГИПОТЕЗА

Множество вещественных чисел обладает большей мощностью, чем множество натуральных чисел. Возникает вопрос: есть ли множество с еще большей мощностью? Но логичным образом рождается еще один вопрос: существует ли множество со средней мощностью? То есть множество с мощностью большей, чем у натуральных чисел, но меньшей, чем у вещественных.

Все множества, эквивалентные множеству натуральных чисел, Кантор называл счетными: например, множества целых и рациональных чисел счетные, а множество вещественных — нет. Поэтому вопрос можно переформулировать и так: существует ли бесконечное несчетное множество с мощностью, меньшей, чем у вещественных чисел?

Кантор несколько лет безуспешно пытался найти пример такого множества. Множества натуральных, целых, рациональных и алгебраических чисел являются счетными. Иррациональные и трансцендентные числа — несчетны, но эквивалентны вещественным числам, и, следовательно, их мощность не меньше.

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука
История Франции. С древнейших времен до Версальского договора
История Франции. С древнейших времен до Версальского договора

Уильям Стирнс Дэвис, профессор истории Университета штата Миннесота, рассказывает в своей книге о самых главных событиях двухтысячелетней истории Франции, начиная с древних галлов и заканчивая подписанием Версальского договора в 1919 г. Благодаря своей сжатости и насыщенности информацией этот обзор многих веков жизни страны становится увлекательным экскурсом во времена антики и Средневековья, царствования Генриха IV и Людовика XIII, правления кардинала Ришелье и Людовика XIV с идеями просвещения и величайшими писателями и учеными тогдашней Франции. Революция конца XVIII в., провозглашение республики, империя Наполеона, Реставрация Бурбонов, монархия Луи-Филиппа, Вторая империя Наполеона III, снова республика и Первая мировая война… Автору не всегда удается сохранить то беспристрастие, которого обычно требуют от историка, но это лишь добавляет книге интереса, привлекая читателей, изучающих или увлекающихся историей Франции и Западной Европы в целом.

Уильям Стирнс Дэвис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука