Читаем Кантор. Бесконечность в математике. полностью

Было бы наивно предположить, что «бесконечность плюс бесконечность» даст просто «бесконечность» и к ней нельзя ничего добавить. Однако во второй половине 1890-х годов Георг Кантор опубликовал статью, в которой ввел обозначение для бесконечных кардинальных чисел — букву «алеф» еврейского алфавита. С ее помощью он создал «арифметику бесконечности», которая показала, что вопрос «сложения бесконечности и бесконечности» требует более пристального рассмотрения.

В первой половине XX века немецкий физик Макс Планк (1858-1947) писал: 

«Новая научная истина торжествует не потому, что ее противники признают свою неправоту Просто ее оппоненты со временем вымирают, а подрастающее поколение знакомо с нею с самого начала». 

Планк имел в виду квантовую механику — теорию, которая произвела революцию в физике XX века, но это замечание прекрасно подходит и для теории Кантора. Действительно, многие математики поколения, родившегося в последние десятилетия XIX века, далекие от предрассудков своих старших коллег, видели в теории бесконечности интересный и стимулирующий потенциал. Одним из самых известных сторонников Кантора был Давид Гильберт, блестящий немецкий математик, родившийся в 1862 году. Когда в начале XX века в теории бесконечности были обнаружены парадоксы и многие из тех, кто сначала верил в нее, начали сомневаться, Гильберт стал главным защитником идей Кантора.

В 1900 году Гильберт был приглашен на конференцию, посвященную открытию Второго международного конгресса математиков в Париже. Это было свидетельством признания его академических заслуг.

На знаменитой конференции Гильберт представил 23 задачи, которые не могли быть решены на тот момент и которые, как он полагал, задали бы направление развитию математики в XX веке. Первым пунктом списка значилась задача, в которой требовалось подтвердить или опровергнуть континуум- гипотезу (напомним, она была сформулирована Кантором в 1878 году, и согласно ей между мощностью множеств натуральных и вещественных чисел отсутствует промежуточная).

ОСНОВА МАТЕМАТИКИ

Благодаря новому поколению математиков, к 1890 году теория множеств и теория бесконечности не только оказались приняты, но и стали основой многих новых областей математики, появившихся в те годы. Прежде всего, понятия теории множеств, в частности различия между счетными и несчетными множествами, являются фундаментальными в теории меры — обобщении исчисления, созданном в последние годы XIX века французскими математиками Эмилем Борелем (1871-1956) и Анри Лебегом (1875-1941). Также они имеют основополагающее значение в топологии — еще одной обобщенной теории исчисления, которая зародилась в тот же период в работах другого французского математика Анри Пуанкаре (1854-1912) (хотя впоследствии из-за большого количества вскрытых парадоксов Пуанкаре стал одним из противников теории множеств).

В это время обрела форму идея того, что теория множеств может быть основой всей математики. Но что конкретно это значило? На протяжении веков образцом математической мысли была классическая древнегреческая геометрия. Более того, считалось, что самый четкий способ объяснения математических понятий — это представление их посредством геометрии. Число, в частности иррациональное число, можно было представить как отрезок, а числовые операции — как построения.

Георг Кантор, около 1894 года.

Анри Лебег, французский математик.

Эмиль Борель, 1929 год. Вместе с Лебегом он начал обобщать понятия теории множеств, чтобы создать на их основе теорию меры.

В 1890-е годы Анри Пуанкаре утверждал, что понятия теории множеств необходимы и для топологии.

Декарт в сочинении «Правила для руководства ума», написанном в 1620-е годы, объясняет, что умножение двух чисел, то есть двух отрезков, в сущности состоит в том, чтобы построить прямоугольник, сторонами которого и будут эти отрезки. Отметим: Декарт не говорит, как мы сейчас, что произведение сторон позволит нам получить площадь прямоугольника. Он утверждает, что прямоугольник является произведением двух чисел; понятия и операции воспринимались как геометрические объекты и построения.

Никто не сможет изгнать нас из рая, созданного Кантором.

Давид Гильберт (1862-1943), немецкий математик

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука
История Франции. С древнейших времен до Версальского договора
История Франции. С древнейших времен до Версальского договора

Уильям Стирнс Дэвис, профессор истории Университета штата Миннесота, рассказывает в своей книге о самых главных событиях двухтысячелетней истории Франции, начиная с древних галлов и заканчивая подписанием Версальского договора в 1919 г. Благодаря своей сжатости и насыщенности информацией этот обзор многих веков жизни страны становится увлекательным экскурсом во времена антики и Средневековья, царствования Генриха IV и Людовика XIII, правления кардинала Ришелье и Людовика XIV с идеями просвещения и величайшими писателями и учеными тогдашней Франции. Революция конца XVIII в., провозглашение республики, империя Наполеона, Реставрация Бурбонов, монархия Луи-Филиппа, Вторая империя Наполеона III, снова республика и Первая мировая война… Автору не всегда удается сохранить то беспристрастие, которого обычно требуют от историка, но это лишь добавляет книге интереса, привлекая читателей, изучающих или увлекающихся историей Франции и Западной Европы в целом.

Уильям Стирнс Дэвис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука