Читаем Кантор. Бесконечность в математике. полностью

Как мы сказали, эта обеспокоенность Фреге «психологизмом» относилась к математике вообще, а не только к теории множеств, его первые предложения по созданию математического языка были сделаны еще до нее. Тем не менее, когда во второй половине 1880-х годов одновременно с Дедекиндом Фреге задумал обосновать всю математику теорией множеств, он сконцентрировался на применении созданного им языка именно к этой теории. Ученый посвятил годы разработке символов и правил четкого языка и впервые рассказал о нем в своей книге Begriffsschrift («Исчисление понятий») 1878 года. Язык Фреге отличается от привычного нам со всех точек зрения, в записи он больше похож на линейный рисунок, чем на текст. Возможно, так было задумано специально, чтобы как можно больше отдалить математический язык от разговорного. Тем не менее это имело негативное последствие, так как предложенную систему было чрезвычайно трудно понять, и сочинение Фреге не получило такого распространения у заинтересованной публики, какое могло бы.

ПАРАДОКС РАССЕЛА

В 1902 году Фреге только что отправил в печать второй том своих «Основ арифметики» (в этой работе он развивал идею основания математики на теории множеств), когда получил письмо от английского логика Бертрана Рассела (1872-1970). Оно было отправлено 16 июня 1902 года из Фрайдей Хилла (Хаслмир, Великобритания) и занимало чуть меньше страницы. Рассел писал, что прочитал первый том «Основ», хвалил его и заявлял, что полностью разделяет задумку Фреге. «И тем не менее, — добавлял Рассел, — я нашел небольшое осложнение».

В чем же оно состояло? Одна из аксиом, которую Фреге подводил под теорию множеств, заключалась в так называемом принципе выделения. Другими словами, согласно ей, каждому свойству соответствует множество, состоящее из всех объектов, которые обладают этим свойством. Например, свойство «быть книгой по математике» соответствует множеству, образованному всеми книгами по математике; свойству «быть рациональным числом» соответствует множество всех рациональных чисел и так далее. В письме Фреге Рассел сформулировал следующий вопрос: что произойдет, если мы рассмотрим свойство «быть множеством, которое не является членом самого себя?»

По аксиоме Фреге, говорит Рассел, этому свойству соответствует множество — назовем его F, — образованное всеми множествами, которые соблюдают параметр не быть членами самих себя. Таким образом, вопрос звучит так: «F — член самого себя?»

Если да, то, как и все члены, оно обладало бы свойством, определяющим множество, но F не должно быть членом самого себя. Мы приходим к противоречию, так как исходим из одного предположения, а получаем противоположный вывод. Таким образом, эта предпосылка не может быть верной. Тогда F не является членом самого себя.

Но в этом случае оно не соответствует свойству, определяющему F, так как должно быть членом самого себя. Мы сталкиваемся с еще одним противоречием (см. рисунок).

Резюмируем: F не может быть членом самого себя, но не может и не быть им. Это невозможно с точки зрения логики. Множество Fy существование которого гарантирует принцип выделения, не может существовать, потому что это порождает логическое противоречие. Принцип выделения, казавшийся таким невинным, ведет к парадоксу. Сегодня парадокс множеств, которые не являются членами самих себя, известен как парадокс Рассела.

КРИЗИС ОСНОВАНИЙ

Парадоксы Бурали-Форти и Кантора, конечно, вызвали обеспокоенность в научном сообществе, но это не было неподконтрольным волнением.

Действительно, проблема парадоксов требовала решения, но оба они относились к таким объектам, как множество всех ординальных чисел и универсальное множество, которые никогда не фигурировали в какой-либо другой области математики, использующей понятия теории множеств. С другой стороны, помимо предложенного Кантором решения, многие другие ученые полагали, что чтобы устранить парадоксы, достаточно внести в теорию множеств технические поправки, например в определение. В общем, хотя все и признавали наличие проблемы, казалось, что она касается очень ограниченной области теории множеств и, разумеется, имеет решение.

Схема парадокса Рассела. Стрелки указывают порядок логических выводов.

Парадокс Рассела, напротив, вызвал гораздо более глубокий кризис, так как аксиому, утверждающую, что каждому свойству соответствует множество, использовали на протяжении нескольких лет все ученые, применявшие понятия теории множеств. Доказав, что эта аксиома противоречива, Рассел не только обрушил всю систему Фреге, но и заставил усомниться во всех достижениях, основанных на теории множеств. В частности, была поставлена под вопрос верность исчисления. Более того, принцип выделения в действительности кажется очевидным, а если такое невинное на первый взгляд утверждение оказывается настолько противоречивым, какие опасности таятся в других аксиомах или предположениях, которые так или иначе математики доверчиво использовали в своих утверждениях?

ГОТЛОБ ФРЕГЕ
Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука