Читаем Капля полностью

Первая капля, коснувшись поверхности сухого стекла, расплющивается и за корот­кое время превращается в ле­пешку, контур которой почти резко очерчен. Если экспе­риментировать с водяной кап­лей диаметром один-два мил­лиметра и посылать ее на стекло с высоты один — полтора метра, то контур обра­зовавшейся лепешки будет близок к окружности. Так деформируется первая капля, потому что та часть жидко­сти, которая соприкасается с сухим стеклом, практически перестает двигаться, как бы сращиваясь с поверхностью. Все происходит почти так, как если бы мы ударом молот­ка расплющили на плоской поверхности шарик из пла­стилина.

 

Падение второй капли воды на лужицу» оставленную на стекле первой каплей

Вторая капля, а тем более третья и последующие оказываются в условиях существенно иных. Между второй

каплей и твердой поверхно­стью имеется жидкая про­слойка, своеобразная смазка, благодаря которой жидкость второй капли легко расте­кается от места падения. В тех случаях, когда скорость движения растекающейся жидкости, зависящая от ее вязкости, не превосходит ско­рости падения капли — а именно так чаще всего быва­ет, и именно в этих случаях образуется корона — капля, растекаясь по жидкой про­слойке, приобретает своеоб­разную форму.

Если бы на поверхность стекла падала не капля жид­кости, а упругий шарик, он, не растекаясь, отразился бы от стекла и унес с собой при­надлежащую ему энергию. И водяной капле надлежало бы отразиться, подобно упру­гому шарику, но только, прежде чем она это сделает, ее сферическая форма меняет­ся: капля приобретает вид кольцевого гребня, разбегающегося от места удара. Из этого гребня и воды лужицы вздымается жидкая пленка, распадаясь на отдельные стер­женьки, которые в свою очередь распадаются на капли,— это и есть корона. Если бы капля была из жидкости бо­лее вязкой, чем вода, короны могло бы и не возникнуть. Энергия падающей капли погасилась бы при растекании гребня и ее не хватило бы на создание всплеска, стержень­ков и капель. Глицериновые капли — ни первая, ни вто­рая, ни последующие — короны не создают. Это отчет­ливо видно на приводимой кинограмме.

 

Капля молока, упавшая в блюдце, смоченное молоком

Здесь, пожалуй, уместно рассказать еще об одном кра­сивом творении из воды — подобии короны, возникающей, когда металлический шарик с большой высоты падает в воду. В момент погружения шарик выталкивает цилинд­рическую пленку воды, которая распадается на симмет­рично расположенные стерженьки и капли. Все это хо­рошо видно на кинограмме, заимствованной нами из аме­риканского журнала.

Красота обеих корон — и той, что создается каплей, и той, что возникает при падении шарика,— очень недол­говечна. Зная частоту, с которой производилась съемка, и посчитав соответствующие кадры, можно установить, что водяная корона от момента зарождения до момента распа­да живет доли секунды. После этого она разрушается, те­ряет симметрию и красоту.

Элементарная теория разрушения водяного пузыря

В книжке о капле вполне уместен рассказ о водяном пузы­ре, поскольку пузырь может возникнуть из падающих на воду капель, а лопнув, обращается снова в капли.

Прежде чем рассказывать о фактах, попытаемся постро­ить элементарную теорию разрушения пузыря, возник­шего во время дождя на поверхности реки или с по­мощью соломинки выдутого из мыльной пены. Все знают, что, если пузырь проколоть иголкой, он исчезнет. Проще всего этот процесс описать следующим образом. В том месте, где пузырь проколот иглой, возникает отверстие. Вдоль контура этого отверстия пленка закруглится, и вследствие этого возникнет лапласовская сила, которая будет увеличивать отверстие, заставляя вещество пленки двигаться прочь от центра отверстия. Масса той части пленки, которая ранее была на месте расширяющегося отверстия, свернется в валик, обрамляющий контур от­верстия и движущийся от его центра. Со временем масса этого валика будет увеличиваться, и, если не произойдет ничего иного, «сопутствующего», через некоторое время все тело пленки (пузыря) свернется в одну каплю радиусом r . Нужно найти формулы, которые определяют и r .

Введем следующие обозначения: R — радиус пузыря, h — толщина пленки, — плотность жидкости.

Радиус конечной капли легко определить, исходя из сле­дующего очевидного условия — объем жидкости в капле и в пленке пузыря одинаков:

4 R 2 h = 4/3 r 3

Из этого условия следует:

r = (3 R 2 h )1/3

Одна формула найдена.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука