Читаем Капля полностью

В появлении большого количества капель при разру­шении пузыря можно убедиться средствами более доступ­ными, чем те, которые использовал Корнфельд. Можно по­ступить, например, так. Стоя в реке по грудь в воде, быст­рым движением рассечь воду рукой. Вскоре на поверхно­сти воды возникнет много пузырей. Если приблизить к ним руку, она покроется множеством маленьких капель — их число значительно больше, чем число пузырей, которые лопнули под ладонью.

Явление оказалось богаче пашей фантазии. После опы­тов Корнфельда есть основание для построения более точ­ной и строгой теории.

Дождь на оконном стекле

Если посмотреть во время дождя на окно, можно заметить, что дождевые капли, ударяясь об оконное стекло, часто не прилипают к нему. Они сначала движутся в направлении, определяемом их свободным полетом, а потом начинают ползти отвесно вниз. Очень часто движущаяся капля ос­тавляет за собой влажный след. Со временем он распа­дается на капельки, которые оказываются столь малыми, что вначале покоятся как бы приклеенные к стеклу. Но вскоре случайная дождевая капля покрупней столкнется с одной из них, захватит ее и вместе с ней поползет отвесно по стеклу, оставляя за собой новый след.

В этом явлении многое нуждается в объяснении. Надо понять, какие капли ползут и какие застывают, приклеив­шись к стеклу? Почему остается за каплей след? И всегда ли он остается?

Прежде чем объяснить, что происходит с дождевой кап­лей на отвесном оконном стекле, рассмотрим поведение капли на гладкой поверхности твердого тела, которая с горизонтом образует некоторый угол г]з. Если бы на глад­кой поверхности располагалась не жидкая капля, а, ска­жем, твердый кубик, происходило бы следующее. До не­которого значения угла я(з кубик по поверхности не двигал­ся бы, а затем, при дальнейшем увеличении угла, он начал бы скользить по поверхности. Об этом подробно рассказы­вают в школе на уроках физики, говоря, что на кубик дей­ствуют две силы: сила трения и проекция силы тяжести на направление возможного движения кубика по наклонной плоскости. Эти силы действуют в противоположных на­правлениях, но сила трения не зависит от наклона плос­кости, а проекция силы тяжести с увеличением угла нак­лона растет. И когда угол наклона превзойдет тот, при ко­тором эта проекция станет равной силе трения, кубик нач­нет скользить по поверхности.

Теперь вернемся к капле. Схематически здесь все так же, как в случае твердого кубика: есть сила тяжести, есть и сила, подобная силе трения, только в случае капли эта сила отличается некоторой особенностью, так как капля не скользит, а переливается по поверхности. По наклон­ной поверхности жидкая капля перемещается, подобно гусенице. В тыльной части капли жидкость отрывается от поверхностней перетекает в лобовую часть. В этом процессе любой участок жидкости, контактирующий с поверхностью, со временем оказывается перед необходимостью оторваться от нее. Сила, которая для этого необходима, и является аналогом силы трения, действующей, когда твердый кубик скользит по твердой поверхности.

Чтобы понять, что же происходит на оконном стекле во время дождя, надо определить две конкурирующие силы: проекцию силы тяжести ( F1 ) и силу, необходимую для от­рыва жидкости от твердой поверхности ( F2 ) в области тыль­ной части движущейся капли.

Сила F1 зависящая от угла наклона плоскости по отноше­нию к горизонту , равна F1 = mg sin ( т — масса капли). Происхождение силы F2 связано с тем, что жидкость и твердое тело, на поверхности которого она находится, притягиваются друг к другу силами молекулярного взаимо­действия. Это взаимодействие количественно можно оха­рактеризовать той энергией, которую необходимо затра­тить, чтобы отделить жидкость от твердой поверхности по площади контакта 1 см2. До отрыва энергия, связанная с границей жидкость — твердое, равнялась жт . После отрыва жидкости от твердого тела образуются две поверх­ности; одна из них — свободная поверхность жидкости с энергией ж , вторая — свободная поверхность твердого тела с энергией т . Таким образом, интересующая нас энергия отрыва в расчете на 1 см 2 равна = т + жжт

Схема движения капли по наклонной плоскости

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука