Читаем Капля полностью

В наших опытах h = 20 см и, следовательно, должно бы равняться —10-1 сек. В действительности оказывается немного большим, видимо, из-за того, что набухшая кап­ля не свободно падает, а стекает вдоль струи, испытывая при этом трение о нее. А вот следующее из формулы пред­сказание, что ~ h 1/2 , когда увеличение длины струи, к примеру, в 4 раза должно увеличить время между двумя приседаниями вдвое, — оправдывается.

Вторая кинограмма. Эта кинограмма отражает изме­нения, которые происходят с концом распадающейся струи, по мере того как возрастает напряженность электричес­кого поля Е . Отчетливо видно, что на конце струи вместо приседающей капли формируется густая щеточка, фон­танчик мелких капель, разлетающихся в разные стороны. С ростом напряженности щеточка становится более широ­кой, и точка на струе, где начинается ее разветвление, приближается к нижнему электроду. Расстояние между этой точкой и электродом обозначим l — далее оно нам по­надобится. Когда напряженность достигла ~ 2000 в/см, практически вся струя начиная от места выхода ее из стек­лянного наконечника (он был немного выше нижнего элект­рода) превращалась в ветвистый фонтан из мелких капель.

Почему? Почему ранее, при небольшой напряженности поля, мелкие капли объединялись в крупную, а при боль­шой напряженности они сочли для себя целесообразным дробиться на еще более мелкие и разлетаться во все сторо­ны сверкающим фонтанчиком? Или, иными словами, по­чему в сильном электрическом поле капля на кончике струи утрачивает устойчивость и разрывается на множество мелких?

Разрыв капли происходит под влиянием электрическо­го растягивающего давления Ре . Оно побеждает лапласовское, которое, сжимая каплю, стремится сохранить ее.

Электрическое давление, возникающее в электрическом поле, подобно тому, которое разрывает тяжелые атомные  ядра, обладающие большим зарядом. Отличие лишь в том, что заряженное ядро находится в поле, которое создано его собственным зарядом, а дробящаяся водяная капля находится в поле, созданном и поддерживаемом внешним источником.

После сказанного легко оценить величину электричес­кого давления. Имея в виду каплю радиуса R , несущую заряд q , можно определить силу, которая разрывает каплю,

 

В этой формуле все разумно: напряженность электри­ческого поля, необходимая для разрыва струи, оказыва­ется тем больше, чем меньше размер капли и чем больше величина поверхностного натяжения, сжимающего ее. Однако, чтобы эту формулу сопоставить с результатами опыта, необходимо учесть, что напряженность Ек отлича­ется от Е0 — напряженности между пластинами конденса­тора. Так как вблизи капли, сидящей на струе, силовые линии поля сгущаются, Ек будет больше, чем Е0.

Расчет показывает, что Ек = Е0 . Удобнее эту формулу перепи­сать в виде:

 

Последняя формула естественно объясняет понижение точки, в которой начинается распад капель, с ростом на­пряженности :

l 1/ E o

Получается своеобразный высоковольтный вольтметр. С его помощью можно опреде­лить напряженность, измерив расстояние l.

Вот теперь, пожалуй, опыт Рэлея — Френкеля понят, и обе кинограммы истолкованы.

Кто творит радугу?

Радугу творят водяные капли: в небе — дождинки, на поливаемом асфальте — капельки, брызги от водяной струи. Радугу могут сотворить и капли-росинки, кото­рыми осенним утром покрыта низко скошенная трава.

 

Вначале поговорим о «геометрии» радуги, т. е. о форме и расположении разноцветных дуг, а затем — о «физике» ра­дуги, о том, какие физические законы определяют ее фор­му и цвета.

«Геометрия радуги» в небе описана давным-давно. Обыч­но в небе видны две разноцветные концентрические дуги — одна яркая, а другая побледнее. Каждая дуга является честью окружности, центр которой лежит на прямой, про­веденной через солнце и глаз наблюдателя. Эта прямая — своеобразная ось, и вокруг нее изогнута радуга. Глаз на­блюдателя оказывается в вершине конусов, в основании которых — разноцветные дуги. Образующие этих кону­сов с осью соответственно составляют углы 42 и 51°. Солн­це светит из-за спины наблюдателя, и, чем ниже оно опу­скается к горизонту, тем выше поднимается вершина ра­дуги. В тот момент, когда солнце касается горизонта, мож­но увидеть полукруглую радугу — большей она никогда не бывает. Если же солнце поднимется над горизонтом бо лее чем на 42°, вершина яркой радуги уйдет за горизонт.

 

Перейти на страницу:

Похожие книги

Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг