Этап второй. Пересечем двусторонним зеркалом выпуклую пространственную фигуру так, чтобы поверхности слева и справа от зеркала были равны. Отразим в зеркале ту часть фигуры, объем которой оказался большим. При этом возникает симметричная фигура. Ее поверхность равна начальной, а объем увеличен. Таким образом, вследствие зеркального отражения мы «улучшили» фигуру, сделали ее более совершенной в том смысле, что увеличили ее объем, сохранив поверхность. Единственная фигура, которую последовательностью зеркальных отображений невозможно «улучшить», т. е. объем которой будет максимальным при данной поверхности или поверхность минимальной при данном объеме, будет сфера. Это именно то, в чем мы и хотели убедиться.
Результат опыта Плато не зависит от размера капли. Любая капля в невесомости будет сферической. Легко, однако, убедиться — и с помощью расчета, и с помощью опыта,— что форма капли может оказаться близкой к сферической и в том случае, если она не находится в невесомости. Для этого капля должна быть настолько мала, чтобы ее вес не мог заметно исказить сферическую форму, которую ей стремится придать поверхностное натяжение. Попытаемся определить, какую каплю в этом смысле следует считать «маленькой». Для этого надо сравнить два давления: то, которое придает капле форму сферы, и то, которое ее расплющивает. В случае «маленькой» капли второе давление должно быть значительно меньше первого.
Первое давление — оно называется капиллярным, или лапласовским, — определяется хорошо известной формулой:
а
Теперь о давлении, которое расплющивает лежащую каплю. Назовем его гравитационным
В этом предположении
Все рассуждения о почти сферической форме «маленькой» капли могут совершенно потерять смысл, если силы поверхностного натяжения на границе капля — твердая поверхность растянут каплю, заставят ее растечься тонким слоем. Однако во многих случаях, когда капля не смачивает подложку, наши рассуждения остаются в силе. Именно такие случаи мы и обсуждали.
«Маленькие» капли совершенной формы можно наблюдать после дождя на листьях многих деревьев. Не смачивая лист, капли располагаются на нем сверкающими шариками. Особенно хороши они н а тыльной, ворсистой стороне. Капли висят как бы в воздухе, поддерживаемые ворсинками. Прекрасные «маленькие» капли можно увидеть после дождя на кончиках игл кактуса или ели.
Вернемся к опыту Плато, к капле, находящейся в невесомости. Советский космонавт В. Н. Кубасов наблюдал жидкие капли в условиях невесомости. Он производил опыты по электросварке плавящимся электродом в космосе. Процесс сварки был запечатлен на кинопленке. Оказалось, что на кончике электрода формируется большая, почти сферическая капля жидкого металла, существенно больше той, которая образуется при сварке в земных условиях. Капли жидкого металла, случайно оторвавшиеся от электрода, свободно парят около места сварки, подобно тому как движутся капли в опыте Плато, если их слегка толкнуть.
Творческая фантазия Плато более 100 лет назад родила идею наземного опыта с каплей в искусственно созданной невесомости. Быть может, он тогда думал и о космосе?
Воспоминание о лекции профессора Френкеля
Начну с банальной мысли о том, что впечатления юности запоминаются надолго — в звуках, в цвете, в незначащих деталях, которые тогда, в давно прошедшие годы, казались особенно важными.
Лекцию Якова Ильича Френкеля я слушал поздней весной 1939 года. Он тогда приезжал в Харьков и в маленькой университетской аудитории амфитеатром, которая еще с середины прошлого века торжественно называлась «большой физической», читал лекцию о капельной модели ядра. Теперь, спустя более трети века, когда во всех подробностях известны драматические события тех дней, когда закладывались основы ядерной энергетики, ясно, что с профессором Френкелем, который всего за несколько недель до приезда в Харьков предложил идею капельной модели ядра, в аудиторию вошла сама история. Тогда же мы, студенты-физики, шли слушать очередную лекцию «гостевого» профессора, одну из многочисленных лекций, которые в «большой физической» часто читали нам университетские гости.