Читаем Капля полностью

На доске появились элементарные формулы — Френ­кель «оценивал» атомный вес того элемента, ядро которого должно потерять устойчивость и разделиться на два дочер­них. Атомный вес такого элемента оказался близким 100. Оценка озадачивающая, так как если она верна, то все элементы, атомный вес которых больше 100 , должны были бы потерять право на существование, а в периодиче­ской системе элементов фигурируют более тяжелые эле­менты, вплоть до урана, атомный вес которого 238. Что- то, видимо, в оценке не учтено. Что же? Френкель уже го­ворил о том, что, превращаясь в две сферические дочерние капли-ядра, материнское ядро должно постепенно вытяги­ваться. Это значит, что поверхность, а с ней и поверхност­ная энергия должны увеличиваться. Следовательно, на пути к процессу деления природой поставлен барьер, который необходимо преодолеть. Величину этого барьера можно вычислить, и во время лекции профессор это сделал. Он показал, что по мере увеличения радиуса материнского ядра-капли этот барьер постепенно снижается и становит­ся практически равным нулю для ядра урана. Вот почему все, что можно примыслить себе за ураном, не должно быть долго жизнеспособным, а менделеевская таблица «ста­бильных» элементов должна оканчиваться именно ураном.

Вернемся к водопроводному крану. Капелька, форми­рующаяся на его конце, подвержена действию силы тяжести, которая деформирует каплю. Действие ее подобно дейст­вию электростатических сил отталкивания между двумя половинками заряженного ядра. Таким образом, если ус­матривать аналогию между развалом ядра и отрывом капли от кончика водопроводного крана, надо примыс­лить себе, что в кране остается капелька, подобная той, которая от него оторвалась.

После лекции профессора Френкеля прошло более трид­цати лет. Капельная модель ядра уточнена, улучшена, а глубокая аналогия, навеянная видом капли на кончике крана или, быть может, дождевой каплей, в науке осталась прочно. Эта аналогия помогла решить задачи общечело­веческой значимости.

Образ капли близок творчеству Френкеля, к каплям он обращался много раз в разные годы и по разным поводам.

О подпрыгнувшей капле

Вначале совсем очевидное утверждение: если в силу каких- либо обстоятельств капля приобрела несферическую фор­му, это означает, что ее поверхность увеличилась по сравнению с поверхностью сферы и, следовательно, увели­чилась и ее поверхностная энергия. Или: если в силу ка­ких-либо обстоятельств несферическая капля вдруг при­обретает сферическую форму, вследствие уменьшения по­верхности должна выделиться избыточная энергия.

Допустим, что нам удалось осуществить преобразова­ние формы капли от несферической к сферической, уда­лось предоставить возможность избыточной поверхност­ной энергии освободиться, выделиться. Кстати, эта энер­гия может оказаться совсем немалой. Ее очень легко вы­числить, если задаться объемом капли и ее начальной фор­мой. Вот пример, который дальше нам пригодится. Круп­ная капля ртути весом 20 г на стеклянной пластинке имеет форму лепешки, близкую к форме цилиндра, радиус ко­торого 1,2 см, а высота 0,35 см. Если эта капля превра­тится в сферу, то при этом освобождается энергия W = 1060 эрг.

Куда же эта энергия денется, на что она способна, что может произойти после того, как капле эта энергия в качестве поверхностной станет не нужна? Какие процессы могут сыграть роль «стоков» выделившейся энергии? Очевидно, некоторая часть энергии должна будет израс­ходоваться на то, чтобы осуществить перемещение ве­щества капли, в результате которого капля станет сфери­ческой. Дело в том, что жидкость, из которой капля состо­ит, обладает некоторой вязкостью, и поэтому всякое изме­нение формы капли связано с необходимостью преодо­леть сопротивление вязкой жидкости ее деформированию, т. е. с необходимостью совершить некоторую работу про­тив сил трения. Кроме того, часть освободившейся энер­гии может израсходоваться на нагрев капли. Можно ожи­дать, что, приобретая сферическую форму, капля будет сама себя подогревать. Кроме того, может нагреваться и пространство, окружающее каплю. В этом случае сфероидизирующаяся капля будет играть роль своеобразной печ­ки, отапливающей пространство вокруг себя.

Кроме названных «стоков» для избыточной энергии можно указать еще один — в основном о нем далее и бу­дет разговор. Если приплюснутая несферическая капель­ка лежит на твердой пластинке и если почему-либо она должна преобразовать свою форму из несферической в сферическую, можно ожидать, что в момент преобразова­ния она оттолкнется от пласт ин ки и подскочит вверх, как может подскочить каждый из нас, оттолкнувшись от земли. Для совершения такого скачка капля, естествен­но, нуждается в энергии, которая может быть частью энер­гии, выделившейся при сокращении поверхности капли.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука