Предположение, действительно, естественное, разумное, но неоднозначное. А что если произошло чрезвычайно маловероятное, но принципиально возможное — камера зафиксировала треки двух электронов, из которых один летел из данной точки, а другой приближался к ней? В этом случае тоже будут два противоположно изогнутых капельных следа, встречающихся в одной точке. Чтобы исключить возможность такого толкования, Андерсон перегородил камеру Вильсона тонкой свинцовой стенкой, рассудив, что частица, пролетевшая через такую стенку, потеряет часть энергии и в магнитном поле будет двигаться по дуге с меньшим радиусом, что позволит точно определить направление полета: частица налетает на свинцовую перегородку с той стороны, где радиус кривизны оставляемого трека больше. С помощью этого остроумного приема он убедился в том, что две частицы, несущие одинаковый заряд, вылетают из одной точки и разлетаются в разные стороны. Одна из них — давно известный электрон, а вторая — впервые увиденный позитрон.
В действительности дело делалось не совсем так гладко и последовательно, как об этом здесь рассказано. Андерсон — чистейшей воды экспериментатор — мог и не знать о совсем недавнем предсказании теоретика Дирака, и обнаружение позитронного трека ему досталось в награду за экспериментальное мастерство и проницательность при изучении фотографий, полученных в камере Вильсона.
В истории открытия позитрона нас главным образом интересует капля, которая помогла увидеть новую частицу— крупинку антивещества!
Пузырьковая камера
В физических лабораториях она появилась сравнительно недавно, о ее рождении американский физик Дональд Глезер сообщил в 1952 году в апрельской книжке журнала « Physical Review » — «Физическое обозрение».
В тех лабораториях, где для обнаружения и исследования элементарных частиц десятки лет пользовались камерой Вильсона, в послевоенные годы стали появляться задачи, непосильные для нее. Она, восторженно именуемая «высшим кассационным судом в физике», не могла зарегистрировать частицы, обладающие очень высокими энергиями, поскольку такие частицы в газовой среде пролетают значительное расстояние, не вступив во взаимодействие ни с ядрами, ни с электронной оболочкой атомов газа. Если это расстояние сравнимо с размером камеры Вильсона, а тем более если существенно превосходит его — частицы пролетят сквозь камеру, ничего не сообщив о себе. Для регистрации таких частиц нужна камера, объем которой заполнен веществом более плотным, чем газ, даже если он сжат значительным давлением.
Легко следовать логике, когда уже известны пройденные, точнее, преодоленные трудности на пути к открытию. Эта легкость— привилегия рассказчика, глядящего на старт с финиша, кроме того, у него есть право на некоторые домыслы, касающиеся деталей пути. Воспользуемся этим правом, но будем помнить, что первооткрыватели идут путями резко индивидуальными и на поворотах руководствуются иногда не логикой, а интуицией, иной раз сворачивая в сторону без особых соображений.
Мысль Глезера, решившего создать замену камере Вильсона, вначале, видимо, развивалась, следуя законам формальной логики. Если в объеме камеры должен находиться не газ, то, следовательно,— либо твердое тело, либо жидкость. Твердое тело, вообще говоря, может оказаться вполне эффективным детектором частиц высокой энергии. Глезер, разумеется, знал о том, что толстослойные фотоэмульсии успешно применяются для регистрации быстрых частиц, приходящих из космоса. Но эти эмульсии, как, впрочем, и иное твердое тело, обладают существенным недостатком, который заключается в слишком стойкой памяти: трек, созданный быстрой частицей в твердом теле, существует долго в связи с тем, что атомы там перемещаются медленно, и много времени должно пройти, прежде чем изгладится дефектная область, созданная энергичной частицей.