Читаем Капля полностью

Томсон немного усовершенствовал приемы Таундсенда, сохранив основную идею эксперимента практически неиз­менной. Ионы он получал не в электролизере, а с помощью непрерывно работающей рентгеновской трубки. В те дни только-только стало известно, что рентгеновские лучи способны ионизировать воздух, и Томсон воспользовался новинкой. И еще одну совершенно «свежую» новинку при­менил Томсон. Незадолго перед его опытами стали извест­ны результаты одного из его сотрудников — Ч. Т. Р. Виль­сона, который показал, что внезапное расширение возду­ха, содержащего влагу, приводит к образованию капель на ионах. Именно так Томсон и создавал капли. Он по­ставил эксперимент на более современном уровне, чем( Таундсенд, но, к сожалению, не улучшил, а, быть может, ухудшил условия его эксперимента, добавив пятый источник сомнений: так как капли возникали вследствие резкого охлаждения воздуха, есть основания подозревать, что за время, пока их температура уравнивается с темпе­ратурой среды, они могут частично испаряться.

Томсон это, конечно, понимал, но, видимо, надеялся на то, что «в-пятых» себя не успеет проявить за время изме­рения и что, сравнивая упругость пара до и после внезап­ного расширения объема камеры, он точнее, чем Таунд­сенд, определит общую массу облака. Найденное им зна­чение е лежало в интервале (5,5—8,4) •10 -10 электроста­тических единиц. Томсон задал природе вопрос, быть может, в немного более изощренной форме, но от этого вопрос четче не прозвучал. И ответ оказался расплывчатым и, как увидим, далеким от числа.

Этап четвертый. 1903 год. Г. А. Вильсон (не Ч.Т.Р., а Г. А. Вильсон. Ч.Т.Р Вильсон в те годы неотступно про­должал исследование поведения капель в туманной ка­мере).

Г. А. Вильсон сделал огромный шаг на пути к достовер­ному измерению заряда электрона. Начал он с усовер­шенствования методики. В камере, где находилось обла­ко капель, сконденсированных на ионах, Вильсон парал­лельно располагал две латунные пластинки, к которым можно было подключить полюсы источника напряжения 2000 в. Экспериментальная процедура Вильсона состояла из последовательности двух опытов. В первом опыте, по­лучая резким расширением облако заряженных капель (как это делал и Томсон), он определял скорость его паде­ния ( 1 ) в пространстве между латунными пластинками в отсутствие электрического поля. Во втором опыте он проделывал то же, однако в этом случае электрическое поле было включено и капли в облаке падали со скоростью 2 не только под влиянием одной лишь силы тяжести т g , как в первом случае, а под влиянием двух сил mg + еЕ, где Е — напряженность электрического поля. В обоих опытах Вильсон наблюдал не за всем облаком, а лишь за теми каплями, которые находятся в его вершине. Капли в вершине облака несут на себе самый маленький заряд, а следовательно, и испытывают на себе действие самой маленькой силы.

Должно иметь место равенство:

 

Но почему скорости, а не ускорения пропорциональны силам? Дело в том, что речь идет об установившемся дви­жении в среде, когда ускорение равно нулю, а величина скорости пропорциональна силе,— это следует из форму­лы Стокса, которую в очерке о капле-шарике я просил запомнить, так как далее она понадобится. Именно здесь она и понадобилась.

В правой части формулы все известно, кроме массы ка­пель. Как и его предшественник, Г. А. Вильсон опреде­лял массу капель, предварительно найдя их радиус по формуле Стокса, т. е. по скорости ее свободного падения в воздухе. Так Вильсон сумел обойтись без произвольного допущения своих предшественников, которые предпола­гали, что число капелек равно числу отрицательных ио­нов. Сформулированный им вопрос природе звучит чет­че. К сожалению, однако, достаточно было оставшихся в эксперименте неточностей, чтобы на ответ наложились помехи. Вильсон, например, предполагал, что в двух по­следовательных расширениях камеры (ему для нахождения 1 и 2 нужны были два расширения!) возникают облака, абсолютно совпадающие по характеристикам. В действи­тельности это не так хотя бы потому, что вариант, при ко­тором облака будут идентичны, единственный, а вариан там, при которых они будут отличаться, нет числа! Кроме того, за время падения водяные капельки могли немного испаряться или, например, мелкие капли могли исчезать, съедаемые более крупными.

Найденное Вильсоном максимальное значение заряда было вдвое больше минимального. Для ищущего истину такой результат неутешителен.

Этап пятый. 1909 год. Р. А. Милликен.

Вслед за Вильсоном Милликен сделал несколько ша­гов вперед на пути к точной формулировке вопроса. Его опыты — их логика и исполнение — исключительно ум­ны и красивы.

Перейти на страницу:

Похожие книги

Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг