Обратимость очень важна, поскольку такие реакции обладают одним замечательным свойством. Если при проведении этой реакции один из продуктов удаляется из сферы реакции (например, связывается с каким-либо специально введенным реагентом), то система сдвигается в сторону образования именно этого продукта, чтобы восполнить его убыль. Как сказал в свое время древнегреческий философ Аристотель: «Природа не терпит пустоты».
Пример обратимой реакции – синтез иминов – соединений, содержащих группировку – N=CH–, они получаются из аминов и альдегидов, сдвоенная стрелка в схеме показывает, что реакция обратима (рис. 6.14).
Если вы прочли предыдущие главы, то должны мысленно воскликнуть: «Опять эти имины!» Да, это те самые имины, которые помогли получить борромеевы кольца и печать Соломона.
Итак, допустим, что у нас имеется десять аминов, различающихся группой R, и десять альдегидов с различными органическими группами. Из этого набора мы можем получить 100 различных иминов, а далее проверить, насколько эффективно каждый из них связывает фермент. Таким образом, нам потребуется 100 пробирок, в каждую из которых мы поместим по одному имину и будем добавлять туда порции фермента: например, с помощью удобной «многозубой» пипетки, показанной ранее. В результате экономится время и соблюдается нужная точность. Все это называют комбинаторной химией
.Лен предложил поставить эксперимент принципиально иначе – не готовить заранее имины, а смешать в
Таким образом, с помощью 10 опытов можно обнаружить самый эффективный из 10 альдегидов. Обозначим его R#
CH=O.Далее следует найти наиболее результативный амин, для этого проведем взаимодействие найденного нами «лучшего» альдегида с каждым из аминов в отдельности (рис. 6.16).
В итоге мы получим 10 иминов, для каждого проверим силу связывания с ферментом. В результате выясним, какая пара амин – альдегид является оптимальной, для чего нам потребовалось всего 20 опытов.
Повторим кратко: методика поиска нужной пары такова – вначале смесь аминов взаимодействует по очереди с каждым альдегидом, что позволяет найти «лучший» альдегид, а затем его смешивают по очереди с каждым амином и находят «лучший» амин.
Теоретически можно было бы обойтись всего одним опытом: смешать все амины и все альдегиды в одной пробирке, добавить фермент, а затем посмотреть, для какого амина и альдегида более всего снизилась концентрация (они ведь более всего израсходуются на связывание с ферментом). Однако пока даже самые современные сверхчувствительные спектральные методы не позволяют провести точный анализ столь сложной смеси.
Ранее мы сравнили эту процедуру с поиском наилучшего рыболовного крючка, но, пожалуй, более точной будет другая аналогия: берут много заготовок для ключей (набор аминов и альдегидов), из которых получается несколько ключей (иминов). Роль замка играет фермент, который сам находит подходящий ключ. Находясь в равновесной смеси, фермент направляет синтез иминов, отбирая наиболее эффективный ингибитор (рис. 6.17).
Нельзя не оценить смелость и своеобразие подхода, предложенного Леном. В традиционной химии синтетик, планируя взаимодействие соединений, вначале всегда тщательно их очищает, а затем в процессе синтеза старается исключить присутствие посторонних веществ. Взамен этого Лен предложил проводить реакции сразу со смесью веществ.
Поскольку работу с «многозубой» пипеткой называют комбинаторной химией, Лен назвал предложенный им новый подход динамической комбинаторной химией
, а набор иминов, возникающих в реакционной смеси, динамической комбинаторной библиотекой. Это несколько необычная библиотека, в ней объекты возникают только в процессе синтеза и представляют собой смесь продуктов реакции. Эффективность нового метода Лену удалось показать при поиске ингибитора для фермента карбоангидразы (это фермент, контролирующий превращения СО2 в организме). При проведении эксперимента Лен взял свыше десяти аминов и альдегидов в качестве исходных соединений. На рисунке 6.18 для простоты показан набор, состоящий всего из трех аминов и трех альдегидов, из них могут быть получены девять иминов. Фермент «сам нашел» в этой смеси наиболее активный ингибитор (в рамке).