Исследования черных дыр с использованием рентгеновского излучения позволили ученым окончательно убедиться в правильности предлагаемой теории жизненного цикла звезд. За свои пионерские работы, приведшие к обнаружению космических источников рентгеновского излучения, Риккардо Джаккони (США) получил Нобелевскую премию по физике в 2002 г.{19}
Большое число космических миссий с аппаратурой разнообразного типа — оптическими камерами (космический телескоп «Хаббл»); инфракрасной техникой (инфракрасная орбитальная обсерватория IRAS; космический телескоп «Спитцер»; телескоп «Гершель»); детекторами рентгеновского излучения (германская космическая рентгеновская обсерватория ROSAT; телескоп Эйнштейна; спутник ASCA; рентгеновская многозеркальная миссия XMM-Newton) — позволяют нам глубже понять процессы роста и развития черных дыр, а также расширить познания о Вселенной, совершенствуя и повышая чувствительность используемых приборов.Открытие и изучение нейтронных звезд, пульсаров и квазаров привело к полному признанию научной общественностью идеи реального существования черных дыр. Еще совсем недавно она казалась излишне радикальной, однако в наши дни множество представителей астрономического сообщества активно участвуют в изучении этих объектов и той роли, которую они играют в формировании галактик. Некоторые из моих исследований направлены на понимание образования черных дыр и их роста во Вселенной. В частности, меня лично очень интересует проблема возникновения самых первых черных дыр, а также механизмы, благодаря которым они позднее превращаются в «бегемотов», которых мы вдруг обнаруживаем «прячущимися» в центрах ближайших галактик. Идея, которую Чандрасекар когда-то предложил научному сообществу, сейчас стала общеизвестной научной парадигмой: самые первые черные дыры представляли собой подобие «трупов» самых первых звезд, которые сформировались во Вселенной. Эти черные дыры, образовавшиеся из остатков звезд (размеры некоторых из них в 10–50 раз превосходили наше Солнце), не должны были становиться столь огромными. Вопреки расчетам сейчас, через миллиарды лет после Большого взрыва, мы обнаруживаем множество квазаров, активно питающихся черных дыр, которые по массе превышают наше Солнце в миллиарды раз.
Каким образом эти крошечные образования, «зародыши» черных дыр за очень короткое время смогли превратиться в чудовищные, сверхмассивные объекты? Компьютерное моделирование показывало, что для наращивания массы им требовалось (при условиях, существовавших в ранней Вселенной) непрерывно поглощать пыль и газ в течение первых 2 млрд лет своей жизни.
Можем ли мы создать каким-либо образом очень массивные первоначальные возмущения, из которых выросли черные дыры? Многие исследователи задумывались над этими вопросами, пытаясь угадать возможный ход процессов раннего периода эволюции Вселенной. В этих поисках принимала участие и я. Вместе с коллегой Джузеппе Лодато мы разработали модель роста черной дыры и смогли показать, что сверхмассивные черные дыры на самом деле могли образоваться в процессе «получил-побежал» (get-go). Драматический процесс быстрой аккреции газа может приводить к образованию гораздо более крупных черных дыр в центрах ранних галактик, чем предполагалось в модели гибели обычной звезды. Астрономы назвали такие объекты черными дырами прямого коллапса. Обнаружилось, что условия ранней Вселенной действительно допускают формирование таких объектов, и я продолжала заниматься этой проблемой совместно с Мартой Волонтери в Парижском астрофизическом институте. Мы изучали процессы развития таких, условно говоря, «беззвездно» рожденных черных дыр. Нам удалось предсказать некоторые уникальные особенности сигнатуры ранних черных дыр, позволяющие проследить процессы их формирования на основании данных, получаемых с наземных телескопов и ожидающихся с предстоящей миссии НАСА космического телескопа имени Джеймса Уэбба, который планируется к запуску в 2018 г.[11]
Моя группа занимается также историей роста представителей еще одного, лишь недавно обнаруженного класса самых больших (недавно открытых так называемых ультра- или сверхмассивных черных дыр), чья масса превышает массу Солнца в десятки миллиардов раз, в близкой Вселенной. Обдумывая вопрос, могут ли черные дыры расти беспрепятственно и бесконечно, мы (совместно с Эзекилем Трейстером) теоретически предсказали существование верхнего предела массы, то есть значения, после которого черная дыра начинает ограничивать собственный дальнейший рост. Нам удалось предсказать существование в космосе таких «бегемотов» еще до их обнаружения астрономами. В нашей работе показано, что физические процессы, соответствующие процессам аккреции, могут ограничивать возрастание черных дыр и поэтому существует максимальный предел их роста во Вселенной.Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс
Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии