Активация молекул как результат хемосорбции.
Принцип Сабатье и вулканообразные кривые Баландина.
Почему платина является базовым элементом катализаторов риформинга.
Почему реакции дегидрирования являются быстрыми реакциями, а реакции гидрогенолиза медленными: каталитический эффект платины
Каталитическая активность
Координационное число (КЧ) платины, формирующей гранецентрированную кубическую решетку (ГЦК), равно 12.
КЧ для поверхностных атомов зависят от типа поверхности и составляют 9 для граней (111), 8 для (100) и 7 для (110).
Атомы на ступенях и изломах, ребрах и углах частиц имеют еще меньшие КЧ – от 7 до 5 [54].
Вывод атома из объема металла на поверхность является сильно эндотермическим процессом, связанным с разрывом связей с соседними атомами.
Энергия, необходимая для образования поверхностного атома, прямо пропорциональна энергии когезии металла и координационной ненасыщенности поверхностного атома.
Уменьшение размера частицы также приводит к увеличению поверхностной энергии за счет увеличения доли поверхностных атомов.
Переход системы в более устойчивое состояние с меньшей энергией Гиббса достигается путем коалесценции частиц при повышенных температурах или за счет адсорбции молекул окружающей среды. Из двух видов адсорбции, физической и химической, последняя имеет ключевое значение для гетерогенного катализа, так как связана с активацией молекулы, обусловленной изменениями ее электронной структуры при адсорбции на поверхности твердого тела.
В основе современного понимания механизма химической адсорбции и катализа на
Дьюар в 1951 году предложил модель образования соли Цейзе и ее палладиевого аналога, комплекса Караша, представляющих собой комплексы этилена и металла (рис. 18) [37].
Рис. 18. Структура комплексов Pt(Pd) c этиленом
В соответствии с этой моделью, в доработанном виде носящей название модели Дьюара – Чата – Дункансона, в образовании комплекса принимают участие два типа связей: донорно-акцепторная связь, образуемая за счет передачи электронной плотности -связи молекулы этилена на вакантную
Атомными орбиталями, удовлетворяющими этому требованию, являются
Ниже представлены схемы образования донорно-акцепторной и дативной связей
Рис. 19. Схема образования – и -связей:
стрелками показаны направления смещения электронной плотности
Образование донорно-акцепторной связи осуществляется по -типу, а дативной связи – по -типу.
Для образования дативной связи возможны два варианта перекрывания орбиталей.
Из-за небольших стерических затруднений, возникающих при боковом перекрывании, в рассмотренных комплексах реализуется схема с расположением иона металла над или под плоскостью, в которой находятся
При отсутствии таких ограничений может реализовываться схема с боковым перекрыванием, например, при образовании связи с молекулой СО, где такому перекрыванию способствует также несимметричное распределение электронной плотности в лепестках разрыхляющей орбитали, связанное с поляризацией связи.
Прочность донорно-акцепторной и дативной связи увеличивается с уменьшением различия в энергии донорной и акцепторной орбиталей в соответствии с величиной энергии стабилизации 106; 107:
где
При переносе электронной плотности с -орбитали этилена происходит накопление положительного заряда в молекуле, что ограничивает перенос электронов, в то же время обратный перенос с занятых орбиталей металла нейтрализует этот заряд, и позволяет продолжить формирование более прочной донорно-акцепторной связи.
В свою очередь передача электронной плотности с молекулы на металл увеличивает донорные свойства металла.
В итоге имеет место синергизм, который приводит к образованию более прочной связи металла и молекулы и более значительному ослаблению связи в молекуле.