Читаем Кентерберийские головоломки полностью

Трудность состоит в том, чтобы войти в сад, отмеченный звездочкой, поскольку если мы уйдем из сада В, то нам перед уходом придется войти туда второй раз, что запрещено условием. Трюк состоят в том, что войти в сад со звездочкой следует, не покидая при этом другой сад. Представьте себе, что шут, подойдя к проходу (пунктирная линия делает здесь острый угол), хотел спрятаться в саду со звездочкой, но, уже поставив одну ногу на эту звездочку, обнаружил, что тревога была напрасной. Он с полным основанием, мог сказать: «Я вошел в сад со звездочкой, ибо я перенес в него одну ногу и часть корпуса, но я не вошел в другой сад дважды, поскольку, войдя туда однажды, я не покидал его до тех пор, пока не вышел через ворота В». Это единственный возможный ответ, и, конечно, шут имел в виду именно его.


54. Решение этой головоломки лучше всего объяснить с помощью рисунка. Если шут положил свои 8 досок указанным здесь способом через угол, образованный канавой, то он сумел довольно просто перебраться через нее.



Таким образом королевский шут мог преодолеть все трудности и благополучно бежать, что он, как нам сообщает, и сделал.

Как совершались различные трюки на рождественском вечере у сквайра

Запись одного из ежегодных «головоломных рождественских вечеров» у сквайра Дэвиджа, сделанная одной из юных родственниц этого старого джентльмена, которая часто проводила веселые рождественские праздники в Стоук Коурси-Холле, не дает разгадки тайн. Поэтому я приведу мои собственные ответы на все головоломки и попытаюсь сделать их по возможности понятнее для тех, кто более или менее новичок в таких делах.


65. У мисс Чарити Локайер был, очевидно, в запасе какой-то трюк, и, мне кажется, что скорее всего он состоял в следующем. Она предложила разложить десять кусков сахару по трем чашкам так, чтобы в каждой оказалось нечетное число кусков.



На рисунке приведен возможный ответ, а цифры на чашках означают число кусков, положенных в каждую из них по отдельности. Помещая чашку, содержащую один кусок, в чашку, содержащую два куска, мы можем проверить, что действительно каждая из них содержит нечетное число кусков. В оставшейся чашке 7 (нечетное число) кусков. Итак, в одной чашке находится 1 кусок, во второй – 3 и в третьей – 7 кусков. Очевидно, что если чашка содержат другую чашку, то в ней находится и содержимое этой чашки.

Всего имеется пятнадцать различных решений этой головоломки:



Перше два числа в тройках показывают число кусков соответственно во внутренней и внешней чашках, вставленных друг в друга. Стоит отметить, что внешняя чашка этой пары сама по себе может быть пустой.


56.· Трюк в данной головоломке заключался в следующем. Из одиннадцати монет удаляется пять, затем добавляются четыре монеты (к этим уже удаленным), и у вас получается девять монет – во второй кучке удаленных монет!


57. Фермер Роуз послал на рынок ровно 101 гуся· Джейбз сначала продал мистеру Джасперу Тайлеру половину стада и полгуся сверх того (то есть 50 1/2 + 1/2 = 51, оставив 50 гусей); затем он продал фермеру Эйвенту треть остатка и еще треть гуся (то есть 16 2/3 + 1/3 = 17, оставив 33 гуся); потом он продал вдове Фостер четверть остатка и еще три четверти гуся (то есть 8 1/4 + 3/4 = 9, оставив 24 гуся); далее он продал Нэду Кольеру пятую часть остатка из еще подарил пятую часть гуся (то есть 4 4/5 + 1/5 = 5, оставив 19 гусей). Этих 19 гусей он и привез назад.


58. Эта небольшая шутка майора Тренчарда также представляет собой головоломку с трюком, а плутовское выражение лица крайнего справа мальчика с цифрой 9 на спине ясно показывало, что он посвящен в тайну.



Я не сомневаюсь (вспомните намек майора, что на числа надо «правильно смотреть»), что его ответ вы видите на рисунке, где мальчик 9 стоит на голове, отчего число на его спине превращается в 6. Это дает общую сумму 36 (четное число), так что, поменяв местами мальчиков 3 и 4 с 7 и 8, мы получаем 1, 2, 7, 8 и 5, 3, 4, 6, а это в каждом случае дает сумму, равную 18. Существуют три других разбиения мальчиков на группы, удовлетворяющих нужному условию: 1, 3, 6, 8–2, 4, 5, 7; 1, 4, 6, 7–2, 3, 5, 8 и 2, 3, 6, 7–1, 4, 5, 8.


59. На рисунке показано решение данной головоломки. При наложенных условиях оно единственное. Начиная с верхнего пудинга, украшенного остролистом, мы касаемся всех пудингов за 21 прямолинейный проход, пробуя дымящийся пудинг в конце десятого прохода и заканчивая вторым пудингом, украшенным остролистом.

Здесь мы имеем пример невозвратного пути шахматной ладьи между максимально удаленными клетками, Ибо если бы мы пожелали посетить каждую клетку по одному и только одному разу, а начать и закончить путь в противоположных концах одной и той же диагонали, то это оказалось бы невозможным.



Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное