Далее, поскольку все степени 10 могут содержать кратные 2 и 5, то отсюда следует, что десятичное разложение никогда не оборвется, если знаменатель вашей обыкновенной дроби содержит какой-либо множитель, отличный от этих двух чисел. Так, 1/2, 1/4 и 1/8 приводят к конечным десятичным дробям 0,5, 0,25 и 0,125; 1/5 и 1/25 дают 0,2 и 0,4; 1/10 и 1/20 приводят к 0,1 и 0,05, ибо в этих случаях знаменатели состоят из кратных 2 и 5. Однако, если вы захотите записать в десятичном виде 1/3, 1/6 или 1/7, то никогда не доберетесь до конца, а получите дроби 0,3333 и т. д., 0,166666 и т. д. и 0,142857142857142857 и т. д., где в первом случае 3 повторяется до бесконечности, во втором случае повторяется 6, а в третьем случае мы получаем период 142857. В случае 1/17 (в «Задаче с ленточкой») мы получим повторяющийся период 0,0588235294117647.
Далее, в приведенных выше выкладках последовательные остатки равны 1, 10, 15, 14, 4, 6, 9 и т. д.; именно эти числа я изобразил на внутреннем круге на рисунке. Можно заметить, что каждое число от 1 до 16 встречается один раз и что если мы умножим наше «ленточное» число на любое из чисел внутреннего круга, то положение последнего точно указывает на начало произведения. Так, если мы умножим наше число на 4, то получим 235 и т. д., если мы умножим его на 6, то получим 352 и т. д. Следовательно, мы можем умножать исходное число на любое число от 1 до 16 и получить при этом желаемый результат.
Суть головоломки состоит в следующем. Любое простое число, за исключением 2 и 5, которые являются делителями 10, делит без остатка любое число, состоящее из девяток, количество которых на 1 меньше данного простого числа. Например, 999 999 (6 девяток) делится на 7, 16 девяток делятся на 17, 18 девяток – на 19 и т. д. Это будет справедливо всегда, хотя порой достаточно и меньшего числа девяток; например, 9 делится на 3, 99 делится на 11, 999 999 – на 13, и здесь наше «ленточное» правило для последовательных чисел не работает и действует иной закон. Следовательно, поскольку 0 и 7 на концах ленточки нельзя перемещать на другие места, мы должны искать дробь с простым знаменателем, оканчивающимся на 7, что приводит к полному периоду. Мы берем 37 и обнаруживаем, что соответствующий период слишком мал, 0,027, ибо 37 делит 999; следовательно, это число не годится. Затем мы берем 47 и находим, что его полный период совпадает с 46-значным числом, приведенным в начале данного раздела.
Если вы разрежете любой из этих полных периодов пополам и расположите одну половину под другой, то обнаружите, что их сумма состоит из одних девяток, так что достаточно найти лишь одну из половинок, а затем выписать дополнения. Так, в случае ленточки, если вы прибавите 05882352 к 94117647, то получите 99999999; точно так же дело обстоит и с нашим длинным ответом. Обратите также внимание, что на приведенном выше рисунке дополнительными друг к другу являются не только противоположные числа на внешнем кольце, но также и противоположные числа на внутреннем кольце, сумма которых всегда равна 17. Мне стоит, быть может, отметить, что, ограничивая наши множители первыми девятью числами, мы, видимо, допускаем возможность, что короткий период может привести к решению с меньшим числом цифр, но есть причины считать это невероятным.
84.
Если бы не требовалось, чтобы все квадраты были одинаковых размеров, то ковер можно было бы разрезать на четыре части любым из трех способов, показанных на рисунке. В каждом случае две части, отмеченные буквойЕсли из этих трех квадратов сложить прямоугольник
Можно заметить, что я сначала привел здесь обратный метод: разрезал три малых квадрата на шесть частей, из которых можно сложить большой квадрат. В случае нашей головоломки мы можем действовать следующим образом.