Читаем Кентерберийские головоломки полностью

Далее, поскольку все степени 10 могут содержать кратные 2 и 5, то отсюда следует, что десятичное разложение никогда не оборвется, если знаменатель вашей обыкновенной дроби содержит какой-либо множитель, отличный от этих двух чисел. Так, 1/2, 1/4 и 1/8 приводят к конечным десятичным дробям 0,5, 0,25 и 0,125; 1/5 и 1/25 дают 0,2 и 0,4; 1/10 и 1/20 приводят к 0,1 и 0,05, ибо в этих случаях знаменатели состоят из кратных 2 и 5. Однако, если вы захотите записать в десятичном виде 1/3, 1/6 или 1/7, то никогда не доберетесь до конца, а получите дроби 0,3333 и т. д., 0,166666 и т. д. и 0,142857142857142857 и т. д., где в первом случае 3 повторяется до бесконечности, во втором случае повторяется 6, а в третьем случае мы получаем период 142857. В случае 1/17 (в «Задаче с ленточкой») мы получим повторяющийся период 0,0588235294117647.



Далее, в приведенных выше выкладках последовательные остатки равны 1, 10, 15, 14, 4, 6, 9 и т. д.; именно эти числа я изобразил на внутреннем круге на рисунке. Можно заметить, что каждое число от 1 до 16 встречается один раз и что если мы умножим наше «ленточное» число на любое из чисел внутреннего круга, то положение последнего точно указывает на начало произведения. Так, если мы умножим наше число на 4, то получим 235 и т. д., если мы умножим его на 6, то получим 352 и т. д. Следовательно, мы можем умножать исходное число на любое число от 1 до 16 и получить при этом желаемый результат.

Суть головоломки состоит в следующем. Любое простое число, за исключением 2 и 5, которые являются делителями 10, делит без остатка любое число, состоящее из девяток, количество которых на 1 меньше данного простого числа. Например, 999 999 (6 девяток) делится на 7, 16 девяток делятся на 17, 18 девяток – на 19 и т. д. Это будет справедливо всегда, хотя порой достаточно и меньшего числа девяток; например, 9 делится на 3, 99 делится на 11, 999 999 – на 13, и здесь наше «ленточное» правило для последовательных чисел не работает и действует иной закон. Следовательно, поскольку 0 и 7 на концах ленточки нельзя перемещать на другие места, мы должны искать дробь с простым знаменателем, оканчивающимся на 7, что приводит к полному периоду. Мы берем 37 и обнаруживаем, что соответствующий период слишком мал, 0,027, ибо 37 делит 999; следовательно, это число не годится. Затем мы берем 47 и находим, что его полный период совпадает с 46-значным числом, приведенным в начале данного раздела.

Если вы разрежете любой из этих полных периодов пополам и расположите одну половину под другой, то обнаружите, что их сумма состоит из одних девяток, так что достаточно найти лишь одну из половинок, а затем выписать дополнения. Так, в случае ленточки, если вы прибавите 05882352 к 94117647, то получите 99999999; точно так же дело обстоит и с нашим длинным ответом. Обратите также внимание, что на приведенном выше рисунке дополнительными друг к другу являются не только противоположные числа на внешнем кольце, но также и противоположные числа на внутреннем кольце, сумма которых всегда равна 17. Мне стоит, быть может, отметить, что, ограничивая наши множители первыми девятью числами, мы, видимо, допускаем возможность, что короткий период может привести к решению с меньшим числом цифр, но есть причины считать это невероятным.


84. Если бы не требовалось, чтобы все квадраты были одинаковых размеров, то ковер можно было бы разрезать на четыре части любым из трех способов, показанных на рисунке. В каждом случае две части, отмеченные буквой А, если их сложить вместе, образуют один из трех квадратов, два другие квадрата состоят из одной части. Но для того, чтобы получить квадраты одинаковых размеров, нам придется разрезать ковер на 6 частей, как показано ад большем рисунке. Часть 1 сама является квадратом, из частей 4 и 5 можно сложить следующий квадрат, а из частей 2, 3 и 6 – третий, все одинакового размера.



Если из этих трех квадратов сложить прямоугольник IDBA, то среднее пропорциональное двух сторон прямоугольника равно стороне равновеликого квадрата. Продолжите AB до С, сделав ВС равным BD, Затем поместите ножку циркуля в точку Е (середина АС) и опишите дугу АС. Я показываю совершенно общий метод превращения прямоугольника в квадраты, но в данном частном случае мы, конечно, можем сразу же поместить ножку циркуля в точку Е, которую искать не приходится. Продолжим BD до пересечения с дугой в точке F, и BF окажется искомой стороной квадрата. Далее отметим AG и DH, равные BF, и проведем разрез IG, а также разрез H К из Я перпендикулярно ID. Шесть искомых частей перенумерованы так же, как и на первом рисунке.



Можно заметить, что я сначала привел здесь обратный метод: разрезал три малых квадрата на шесть частей, из которых можно сложить большой квадрат. В случае нашей головоломки мы можем действовать следующим образом.



Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное